Project Details
Description
DESCRIPTION (provided by applicant): The goal of this study is to broaden our understanding of a gene regulatory network that plays key roles during embryogenesis. Recent studies argue strongly that the transcription factors Sox2 and Oct-3/4 each exhibit important hallmarks of master regulators that orchestrate mammalian embryogenesis and the self-renewal of embryonic stem (ES) cells. Sox2 and Oct-3/4 have been shown to work together cooperatively to coordinate the transcription of at least 6 genes (FGF-4, UTF1, Fbx15, Nanog, Sox2 and Oct-3/4) expressed during embryogenesis and by ES cells. These genes are referred to as Sox2:Oct-3/4 target genes. The work proposed here is based on 3 novel findings and hypotheses. First, we recently identified 19 additional genes that are likely to be part of the Sox2:Oct-3/4 gene regulatory network. Given that 4, and possibly 5, of the 6 known Sox2:Oct-3/4 target genes are essential for embryogenesis it is our central hypothesis that the majority of Sox2:Oct-3/4 target genes play critical roles during embryogenesis, and that many are required for the self-renewal of ES cells. Second, the expression of the 6 known Sox2:Oct-3/4 target genes was shown to be very heavily dependent on closely spaced DNA binding sites for Sox2 and Oct-3/4 in the enhancer of each gene. These and other studies led us to hypothesize that the Sox2:Oct-3/4 gene regulatory network is controlled coordinately by a shared set of co-activators, at least some of which are themselves regulated during differentiation and, thus, are key players in cell fate determination. Third, although Sox2, in combination with Oct-3/4, is known to stimulate the expression of Sox2:Oct-3/4 target genes in stem cells, we determined that at least 5 of the 6 Sox2:Oct-3/4 target genes, including the Sox2 gene itself, are inhibited when Sox2 is overexpressed. These findings led to our hypothesis that Sox2:Oct-3/4 target genes are regulated carefully by a negative, as well as a positive, feedback loop to ensure that these genes are expressed at levels required for embryogenesis. Three Specific Aims are proposed to test these hypotheses. 1) Examine a newly identified set of putative Sox2:Oct-3/4 target genes for their effects on the self-renewal of ES cells and mammalian development. 2) Examine the roles of specific co-activators in the expression of Sox2:Oct-3/4 target genes. 3) Determine the molecular mechanisms by which Sox2 overexpression inhibits the expression of Sox2:Oct-3/4 target genes. Together, these studies will provide a mechanistic understanding of a critical gene regulatory network that orchestrates embryogenesis and controls the self-renewal of ES cells. As such, these studies will provide novel insights and have significant impact on developmental biology, regenerative medicine and cancer biology.
Status | Finished |
---|---|
Effective start/end date | 8/1/85 → 1/31/13 |
Funding
- National Institutes of Health: $111,375.00
- National Institutes of Health: $268,275.00
- National Institutes of Health: $268,275.00
- National Institutes of Health: $285,328.00
- National Institutes of Health: $265,592.00
ASJC
- Medicine(all)
- Biochemistry, Genetics and Molecular Biology(all)
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.