TY - JOUR
T1 - α1-Adrenergic responsiveness in human skeletal muscle feed arteries
T2 - The impact of reducing extracellular pH
AU - Ives, Stephen J.
AU - Andtbacka, Robert H.I.
AU - Noyes, R. Dirk
AU - Morgan, R. Garrett
AU - Gifford, Jayson R.
AU - Park, Song Young
AU - Symons, J. David
AU - Richardson, Russell S.
PY - 2013/1
Y1 - 2013/1
N2 - New Findings: • What is the central question of this study? In human arteries involved in the regulation of muscle blood flow, there is a lack of data about whether acidosis alters vascular sensitivity to vasoactive agents, as well as altering endothelium dependent vasorelaxation. Little is known about the interaction of metabolites and vascular function in human skeletal muscle feed arteries. • What is the main finding and its importance? Increasing acidosis attenuated the response and sensitivity of the arteries to phenylephrine; this effect was selective to the receptor over smooth muscle. Acidosis did not alter endothelium dependent vasorelaxation. Impaired vasoconstriction coupled with intact vasorelaxation, promotes decreased vascular tone with exposure to acidosis, and may contribute to sympatholysis during exercise. Graded exercise results not only in the modulation of adrenergic mediated smooth muscle tone and a preferential increase in blood flow to the active skeletal muscle termed 'functional sympatholysis', but is also paralleled by metabolically induced reductions in pH. We therefore sought to determine whether pH attenuates α1-adrenergic receptor sensitivity in human feed arteries. Feed arteries (560 ± 31 μm i.d.) were harvested from 24 humans (55 ± 4 years old) and studied using the isometric tension technique. Vessel function was assessed using KCl, phenylephrine (PE), ACh and sodium nitroprusside (SNP) concentration-response curves to characterize non-receptor-mediated and receptor-mediated vasocontraction, as well as endothelium-dependent and -independent vasorelaxation, respectively. All concentration-response curves were obtained from (originally contiguous) vessel rings in separate baths with a pH of 7.4, 7.1, 6.8 or 6.5. Reduction of the pH, via HCl, reduced maximal PE-induced vasocontraction (pH 7.4 = 85 ± 19, pH 7.1 = 57 ± 16, pH 6.8 = 34 ± 15 and pH 6.5 = 16 ± 5% KClmax), which was partly due to reduced smooth muscle function, as assessed by KCl (pH 7.4 = 88 ± 13, pH 7.1 = 67 ± 8, pH 6.8 = 67 ± 9 and pH 6.5 = 58 ± 8% KClmax). Graded acidosis had no effect on maximal vasorelaxation. In summary, these data reveal that reductions in extracellular pH attenuate α1-mediated vasocontraction, which is partly explained by reduced smooth muscle function, although vasorelaxation in response to ACh and SNP remained intact. These findings support the concept that local acidosis is likely to contribute to functional sympatholysis and exercise hyperaemia by opposing sympathetically mediated vasoconstriction while not impacting vasodilatation.
AB - New Findings: • What is the central question of this study? In human arteries involved in the regulation of muscle blood flow, there is a lack of data about whether acidosis alters vascular sensitivity to vasoactive agents, as well as altering endothelium dependent vasorelaxation. Little is known about the interaction of metabolites and vascular function in human skeletal muscle feed arteries. • What is the main finding and its importance? Increasing acidosis attenuated the response and sensitivity of the arteries to phenylephrine; this effect was selective to the receptor over smooth muscle. Acidosis did not alter endothelium dependent vasorelaxation. Impaired vasoconstriction coupled with intact vasorelaxation, promotes decreased vascular tone with exposure to acidosis, and may contribute to sympatholysis during exercise. Graded exercise results not only in the modulation of adrenergic mediated smooth muscle tone and a preferential increase in blood flow to the active skeletal muscle termed 'functional sympatholysis', but is also paralleled by metabolically induced reductions in pH. We therefore sought to determine whether pH attenuates α1-adrenergic receptor sensitivity in human feed arteries. Feed arteries (560 ± 31 μm i.d.) were harvested from 24 humans (55 ± 4 years old) and studied using the isometric tension technique. Vessel function was assessed using KCl, phenylephrine (PE), ACh and sodium nitroprusside (SNP) concentration-response curves to characterize non-receptor-mediated and receptor-mediated vasocontraction, as well as endothelium-dependent and -independent vasorelaxation, respectively. All concentration-response curves were obtained from (originally contiguous) vessel rings in separate baths with a pH of 7.4, 7.1, 6.8 or 6.5. Reduction of the pH, via HCl, reduced maximal PE-induced vasocontraction (pH 7.4 = 85 ± 19, pH 7.1 = 57 ± 16, pH 6.8 = 34 ± 15 and pH 6.5 = 16 ± 5% KClmax), which was partly due to reduced smooth muscle function, as assessed by KCl (pH 7.4 = 88 ± 13, pH 7.1 = 67 ± 8, pH 6.8 = 67 ± 9 and pH 6.5 = 58 ± 8% KClmax). Graded acidosis had no effect on maximal vasorelaxation. In summary, these data reveal that reductions in extracellular pH attenuate α1-mediated vasocontraction, which is partly explained by reduced smooth muscle function, although vasorelaxation in response to ACh and SNP remained intact. These findings support the concept that local acidosis is likely to contribute to functional sympatholysis and exercise hyperaemia by opposing sympathetically mediated vasoconstriction while not impacting vasodilatation.
UR - http://www.scopus.com/inward/record.url?scp=84872197016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872197016&partnerID=8YFLogxK
U2 - 10.1113/expphysiol.2012.066613
DO - 10.1113/expphysiol.2012.066613
M3 - Article
C2 - 22798402
AN - SCOPUS:84872197016
VL - 98
SP - 256
EP - 267
JO - Experimental Physiology
JF - Experimental Physiology
SN - 0958-0670
IS - 1
ER -