Abstract
Previous studies from our laboratory have shown that the activation of G2-M checkpoint after exposure of MCF-7 breast cancer cells to γ-irradiation (IR) is dependent on the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Studies presented in this report indicate that IR exposure of MCF-7 cells is associated with a marked increase in expression of breast cancer 1 (BRCA1) tumor suppressor, an effect that requires ERK1/2 activation and involves posttranscriptional control mechanisms. Furthermore, reciprocal coimmunoprecipitation, as well as colocalization studies, indicate an interaction between BRCA1 and ERK1/2 in both nonirradiated and irradiated cells. Studies using short hairpin RNA targeting BRCA1 show that BRCA1 expression is necessary for IR-induced G2-M cell cycle arrest, as well as ERK1/2 activation in MCF-7 cells. Although BRCA1 expression is not required for IR-induced phosphorylation of ataxia telangiectasia mutated (ATM)-Ser1981, it is required for ATM-mediated downstream signaling events, including IR-induced phosphorylation of Chk2-Thr68 and p53-Ser20. Moreover, BRCA1 expression is also required for IR-induced ATM and rad3 related activation and Chk1 phosphorylation in MCF-7 cells. These results implicate an important interaction between BRCA1 and ERK1/2 in the regulation of cellular response after IR-induced DNA damage in MCF-7 cells.
Original language | English (US) |
---|---|
Pages (from-to) | 5113-5121 |
Number of pages | 9 |
Journal | Cancer Research |
Volume | 68 |
Issue number | 13 |
DOIs | |
State | Published - Jul 1 2008 |
ASJC Scopus subject areas
- Oncology
- Cancer Research