TY - JOUR
T1 - 5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for β-oxidation of fatty acids
AU - Hanley, Peter J.
AU - Dröse, Stefan
AU - Brandt, Ulrich
AU - Lareau, Rachel A.
AU - Banerjee, Abir L.
AU - Srivastava, D. K.
AU - Banaszak, Leonard J.
AU - Barycki, Joseph J.
AU - Van Veldhoven, Paul P.
AU - Daut, Jürgen
PY - 2005/1/15
Y1 - 2005/1/15
N2 - 5-Hydroxydecanoate (5-HD) blocks pharmacological and ischaemic preconditioning, and has been postulated to be a specific inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. However, recent work has shown that 5-HD is activated to 5-hydroxydecanoyl-CoA (5-HD-CoA), which is a substrate for the first step of β-oxidation. We have now analysed the complete β-oxidation of 5-HD-CoA using specially synthesised (and purified) substrates and enzymes, as well as isolated rat liver and heart mitochondria, and compared it with the metabolism of the physiological substrate decanoyl-CoA. At the second step of β-oxidation, catalysed by enoyl-CoA hydratase, enzyme kinetics were similar using either decenoyl-CoA or 5-hydroxydecenoyl-CoA as substrate. The last two steps were investigated using l-3-hydroxyacyl-CoA dehydrogenase (HAD) coupled to 3-ketoacyl-CoA thiolase. Vmax for the metabolite of 5-HD (3,5-dihydroxydecanoyl-CoA) was fivefold slower than for the corresponding metabolite of decanoate (L-3-hydroxydecanoyl-CoA). The slower kinetics were not due to accumulation of D-3-hydroxyoctanoyl-CoA since this enantiomer did not inhibit HAD. Molecular modelling of HAD complexed with 3,5-dihydroxydecanoyl-CoA suggested that the 5-hydroxyl group could decrease HAD turnover rate by interacting with critical side chains. Consistent with the kinetic data, 5-hydroxydecanoyl-CoA alone acted as a weak substrate in isolated mitochondria, whereas addition of 100 μm 5-HD-CoA inhibited the metabolism of decanoyl-CoA or lauryl-carnitine. In conclusion, 5-HD is activated, transported into mitochondria and metabolised via β-oxidation, albeit with rate-limiting kinetics at the penultimate step. This creates a bottleneck for β-oxidation of fatty acids. The complex metabolic effects of 5-HD invalidate the use of 5-HD as a blocker of mitochondrial KATP channels in studies of preconditioning.
AB - 5-Hydroxydecanoate (5-HD) blocks pharmacological and ischaemic preconditioning, and has been postulated to be a specific inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. However, recent work has shown that 5-HD is activated to 5-hydroxydecanoyl-CoA (5-HD-CoA), which is a substrate for the first step of β-oxidation. We have now analysed the complete β-oxidation of 5-HD-CoA using specially synthesised (and purified) substrates and enzymes, as well as isolated rat liver and heart mitochondria, and compared it with the metabolism of the physiological substrate decanoyl-CoA. At the second step of β-oxidation, catalysed by enoyl-CoA hydratase, enzyme kinetics were similar using either decenoyl-CoA or 5-hydroxydecenoyl-CoA as substrate. The last two steps were investigated using l-3-hydroxyacyl-CoA dehydrogenase (HAD) coupled to 3-ketoacyl-CoA thiolase. Vmax for the metabolite of 5-HD (3,5-dihydroxydecanoyl-CoA) was fivefold slower than for the corresponding metabolite of decanoate (L-3-hydroxydecanoyl-CoA). The slower kinetics were not due to accumulation of D-3-hydroxyoctanoyl-CoA since this enantiomer did not inhibit HAD. Molecular modelling of HAD complexed with 3,5-dihydroxydecanoyl-CoA suggested that the 5-hydroxyl group could decrease HAD turnover rate by interacting with critical side chains. Consistent with the kinetic data, 5-hydroxydecanoyl-CoA alone acted as a weak substrate in isolated mitochondria, whereas addition of 100 μm 5-HD-CoA inhibited the metabolism of decanoyl-CoA or lauryl-carnitine. In conclusion, 5-HD is activated, transported into mitochondria and metabolised via β-oxidation, albeit with rate-limiting kinetics at the penultimate step. This creates a bottleneck for β-oxidation of fatty acids. The complex metabolic effects of 5-HD invalidate the use of 5-HD as a blocker of mitochondrial KATP channels in studies of preconditioning.
UR - http://www.scopus.com/inward/record.url?scp=19944430244&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=19944430244&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2004.073932
DO - 10.1113/jphysiol.2004.073932
M3 - Article
C2 - 15513944
AN - SCOPUS:19944430244
SN - 0022-3751
VL - 562
SP - 307
EP - 318
JO - Journal of Physiology
JF - Journal of Physiology
IS - 2
ER -