A cord blood monocyte–derived cell therapy product accelerates brain remyelination

Arjun Saha, Susan Buntz, Paula Scotland, Li Xu, Pamela Noeldner, Sachit Patel, Amy Wollish, Aruni Gunaratne, Tracy Gentry, Jesse Troy, Glenn K. Matsushima, Joanne Kurtzberg, Andrew E. Balber

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Microglia and monocytes play important roles in regulating brain remyelination. We developed DUOC-01, a cell therapy product intended for treatment of demyelinating diseases, from banked human umbilical cord blood (CB) mononuclear cells. Immunodepletion and selection studies demonstrated that DUOC-01 cells are derived from CB CD14+ monocytes. We compared the ability of freshly isolated CB CD14+ monocytes and DUOC-01 cells to accelerate remyelination of the brains of NOD/SCID/IL2Rγnull mice following cuprizone feeding–mediated demyelination. The corpus callosum of mice intracranially injected with DUOC-01 showed enhanced myelination, a higher proportion of fully myelinated axons, decreased gliosis and cellular infiltration, and more proliferating oligodendrocyte lineage cells than those of mice receiving excipient. Uncultured CB CD14+ monocytes also accelerated remyelination, but to a significantly lesser extent than DUOC-01 cells. Microarray analysis, quantitative PCR studies, Western blotting, and flow cytometry demonstrated that expression of factors that promote remyelination including PDGF-AA, stem cell factor, IGF1, MMP9, MMP12, and triggering receptor expressed on myeloid cells 2 were upregulated in DUOC-01 compared to CB CD14+ monocytes. Collectively, our results show that DUOC-01 accelerates brain remyelination by multiple mechanisms and could be beneficial in treating demyelinating conditions.

Original languageEnglish (US)
Article numbere86667
JournalJCI insight
Volume1
Issue number13
DOIs
StatePublished - Aug 18 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'A cord blood monocyte–derived cell therapy product accelerates brain remyelination'. Together they form a unique fingerprint.

Cite this