Abstract
The pH level in a chronic wound bed is a key indicative parameter for assessment of the healing progress. Due to fragility and inability to measure multiple wound regions simultaneously, commercial glass microelectrodes are not well-suited for spatial mapping of the wound pH. To address this issue, we present an inexpensive flexible array of pH sensors fabricated on a polymer-coated commercial paper (palette paper). Each sensor consists of two screen-printed electrodes, an Ag/AgCl reference electrode and a carbon electrode coated with a conductive proton-selective polymeric (polyaniline, PANI) membrane. Laser-machining is used to create a self-aligned passivation layer with access holes that is bonded over the sensing and reference electrodes by lamination technology. Characterization of the pH sensors reveal a linear (r2 = 0.9734) relationship between the output voltage and pH in the 4-10 pH range with an average sensitivity of -50 mV/pH. The sensors feature a rise and fall time of 12 and 36 s for a pH swing of 8-6-8. The sensor biocompatibility is confirmed with human kertinocyte cells.
Original language | English (US) |
---|---|
Pages (from-to) | 609-617 |
Number of pages | 9 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 229 |
DOIs | |
State | Published - Jun 28 2016 |
Externally published | Yes |
Keywords
- Chronic wound
- Laser micromachining
- Paper substrates
- Rapid prototyping
- pH sensing array
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry