TY - JOUR
T1 - A new multicomponent diffusion formulation for the finite-volume method
T2 - Application to convective droplet combustion
AU - Pope, Daniel N.
AU - Gogos, George
N1 - Funding Information:
Received 9 June 2004; accepted 3 February 2005. This research was partially funded by NASA EPSCoR under Grant NCC5-401 and ARO EPSCoR under Grant DAAD19-99-1-0116. Computational resources were provided by the Thermal/Fluids Computational Facility at the University of Nebraska–Lincoln. The present address of Daniel N. Pope is University of Minnesota Duluth, Department of Mechanical and Industrial Engineering, 105 VKH, 1305 Ordean Court, Duluth, MN 55812-3042, USA. Address correspondence to George Gogos, University of Nebraska–Lincoln, Department of Mechanical Engineering, N104 Walter Scott Engineering Center, Lincoln, NE 68588-0656, USA. E-mail: [email protected]
PY - 2005/9
Y1 - 2005/9
N2 - A new multicomponent formulation, appropriate for use with the finite-volume method, has been developed to describe mass diffusion velocities accurately. The new formulation is applied in a quasi-steady numerical model for n-heptane fuel droplet combustion in a forced-convection environment. Results obtained using the complete formulation are compared to the results obtained under various assumptions. Using a single binary diffusion coefficient produces results for extinction velocity, maximum temperature, flame dimensions, evaporation constant, and drag coefficient that are significantly different from the results obtained using the complete formulation. Neglecting thermal diffusion (Soret effect) causes only minor changes (less than 2%).
AB - A new multicomponent formulation, appropriate for use with the finite-volume method, has been developed to describe mass diffusion velocities accurately. The new formulation is applied in a quasi-steady numerical model for n-heptane fuel droplet combustion in a forced-convection environment. Results obtained using the complete formulation are compared to the results obtained under various assumptions. Using a single binary diffusion coefficient produces results for extinction velocity, maximum temperature, flame dimensions, evaporation constant, and drag coefficient that are significantly different from the results obtained using the complete formulation. Neglecting thermal diffusion (Soret effect) causes only minor changes (less than 2%).
UR - http://www.scopus.com/inward/record.url?scp=25444479135&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=25444479135&partnerID=8YFLogxK
U2 - 10.1080/10407790590959807
DO - 10.1080/10407790590959807
M3 - Article
AN - SCOPUS:25444479135
SN - 1040-7790
VL - 48
SP - 213
EP - 233
JO - Numerical Heat Transfer, Part B: Fundamentals
JF - Numerical Heat Transfer, Part B: Fundamentals
IS - 3
ER -