TY - JOUR
T1 - A p53–phosphoinositide signalosome regulates nuclear AKT activation
AU - Chen, Mo
AU - Choi, Suyong
AU - Wen, Tianmu
AU - Chen, Changliang
AU - Thapa, Narendra
AU - Lee, Jeong Hyo
AU - Cryns, Vincent L.
AU - Anderson, Richard A.
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2022/7
Y1 - 2022/7
N2 - The tumour suppressor p53 and PI3K–AKT pathways have fundamental roles in the regulation of cell growth and apoptosis, and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear AKT activation through a p53-dependent mechanism that is distinct from the canonical membrane-localized PI3K–AKT pathway. Following genotoxic stress, a nuclear PI3K binds p53 in the non-membranous nucleoplasm to generate a complex of p53 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which recruits AKT, PDK1 and mTORC2 to activate AKT and phosphorylate FOXO proteins, thereby inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear AKT in an on/off fashion following stress, whereas mutant p53 dose-dependently stimulates high basal AKT activity. The p53–PtdIns(3,4,5)P3 complex is dephosphorylated to p53–phosphatidylinositol 4,5-bisphosphate by PTEN to inhibit AKT activation. The nuclear p53–phosphoinositide signalosome is distinct from the canonical membrane-localized pathway and insensitive to PI3K inhibitors currently in the clinic, which underscores its therapeutic relevance.
AB - The tumour suppressor p53 and PI3K–AKT pathways have fundamental roles in the regulation of cell growth and apoptosis, and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear AKT activation through a p53-dependent mechanism that is distinct from the canonical membrane-localized PI3K–AKT pathway. Following genotoxic stress, a nuclear PI3K binds p53 in the non-membranous nucleoplasm to generate a complex of p53 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which recruits AKT, PDK1 and mTORC2 to activate AKT and phosphorylate FOXO proteins, thereby inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear AKT in an on/off fashion following stress, whereas mutant p53 dose-dependently stimulates high basal AKT activity. The p53–PtdIns(3,4,5)P3 complex is dephosphorylated to p53–phosphatidylinositol 4,5-bisphosphate by PTEN to inhibit AKT activation. The nuclear p53–phosphoinositide signalosome is distinct from the canonical membrane-localized pathway and insensitive to PI3K inhibitors currently in the clinic, which underscores its therapeutic relevance.
UR - http://www.scopus.com/inward/record.url?scp=85133572198&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133572198&partnerID=8YFLogxK
U2 - 10.1038/s41556-022-00949-1
DO - 10.1038/s41556-022-00949-1
M3 - Article
C2 - 35798843
AN - SCOPUS:85133572198
SN - 1465-7392
VL - 24
SP - 1099
EP - 1113
JO - Nature Cell Biology
JF - Nature Cell Biology
IS - 7
ER -