Abstract
Homo-oligomerization of Bax (or Bak) has been hypothesized to be responsible for cell death through the mitochondria-dependent apoptosis pathway. However, partly due to a lack of structural information on the Bax homo-oligomerization and apoptosis inducing domain(s), this hypothesis has remained difficult to test. In this study, we identified a three-helix unit, comprised of the BH3 (helix 2) and BH1 domains (helix 4 and helix 5), as the homo-oligomerization domain of Bax. When targeted to mitochondria, this minimum oligomerization unit induced apoptosis in Bax-/-Bak-/- mouse embryonic fibroblasts (DKO). Strikingly, the central helix of Bax (helix 5), when replacing the corresponding helix (helix 5) of Bcl-xL, an anti-apoptotic Bcl-2 family protein structurally homologous to Bax, converted Bcl-xL into a Bax-like molecule capable of forming oligomers and causing apoptosis in the DKO cells. Finally, a series of systematic mutagenesis analyses revealed that homo-oligomerization is both necessary and sufficient for the apoptotic activity of Bax. These results suggest that active Bax causes mitochondrial damage through homo-oligomers of a three-helix functional unit.
Original language | English (US) |
---|---|
Pages (from-to) | 1937-1948 |
Number of pages | 12 |
Journal | Genes and Development |
Volume | 21 |
Issue number | 15 |
DOIs | |
State | Published - Aug 1 2007 |
Keywords
- Apoptotic activity
- BH3
- Bax
- Bcl-2 family
- Homo-oligomerization
ASJC Scopus subject areas
- Genetics
- Developmental Biology