TY - JOUR
T1 - Ab initio and DFT conformational studies of propanal, 2-butanone, and analogous imines and enamines
AU - Zhong, Haizhen
AU - Stewart, Eugene L.
AU - Kontoyianni, Maria
AU - Bowen, J. Phillip
PY - 2005
Y1 - 2005
N2 - The potential energy surfaces (PES) of 2-butanone, 2-butanimine, 1-butenamine, propanal, and propanimine have been explored with ab initio and DFT calculations at the RHF/6-311G**, MP2/6-311G **, and B3LYP/6-311G** levels of theory. In agreement with previous experimental and computational results, the PES provides two minima for each of the above molecules with the exception of 2-butanone, which clearly shows three distinct minima. Factors influencing the conformational preferences are also elaborated. Our calculations suggest that for 2-butanone and propanal, the steric and the bond dipole interactions are primarily responsible for the conformational preferences of these compounds. Additional charge-charge interactions might also play an important role in determining the imine conformations. For enamines, however, steric interactions play a critical role, with bond dipole interactions exerting some influence. Our results also suggest that for imine formation from butanone and/or propanal, the imine is the predominant product, not the enamine, which is consistent with experimental observations. Therefore, these calculations should provide a better understanding of the ketone/aldehyde to imine and enamine transformations. This transformation may introduce an important imine moiety for the analogues of trans-N-methyl-4-(1-naphthylvinyl)pyridine (NVP), a choline acetyltransferase (ChAT) inhibitor.
AB - The potential energy surfaces (PES) of 2-butanone, 2-butanimine, 1-butenamine, propanal, and propanimine have been explored with ab initio and DFT calculations at the RHF/6-311G**, MP2/6-311G **, and B3LYP/6-311G** levels of theory. In agreement with previous experimental and computational results, the PES provides two minima for each of the above molecules with the exception of 2-butanone, which clearly shows three distinct minima. Factors influencing the conformational preferences are also elaborated. Our calculations suggest that for 2-butanone and propanal, the steric and the bond dipole interactions are primarily responsible for the conformational preferences of these compounds. Additional charge-charge interactions might also play an important role in determining the imine conformations. For enamines, however, steric interactions play a critical role, with bond dipole interactions exerting some influence. Our results also suggest that for imine formation from butanone and/or propanal, the imine is the predominant product, not the enamine, which is consistent with experimental observations. Therefore, these calculations should provide a better understanding of the ketone/aldehyde to imine and enamine transformations. This transformation may introduce an important imine moiety for the analogues of trans-N-methyl-4-(1-naphthylvinyl)pyridine (NVP), a choline acetyltransferase (ChAT) inhibitor.
UR - http://www.scopus.com/inward/record.url?scp=24944524332&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=24944524332&partnerID=8YFLogxK
U2 - 10.1021/ct049890p
DO - 10.1021/ct049890p
M3 - Article
C2 - 26641293
AN - SCOPUS:24944524332
SN - 1549-9618
VL - 1
SP - 230
EP - 238
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 2
ER -