Abstract
Starting from an exact quantum-statistical description, the influence of the shape of the energy landscape on the magnetic viscosity is investigated. Magnetic phase-space analysis based on Kramers' escape-rate theory of chemical reaction kinetics theory shows that the activation entropy associated with thermally activated hopping modifies the magnetic viscosity by reducing the attempt-frequency prefactor compared to an earlier prediction by Brown [W. F. Brown, Phys. Rev. 130, 1677 (1963)]. Energetic contributions are analyzed in terms of a model applicable to a range of coherent and noncoherent magnetization processes, and in the long-time limit deviations from the linear logarithmic magnetic-viscosity law are found.
Original language | English (US) |
---|---|
Pages (from-to) | 5069-5071 |
Number of pages | 3 |
Journal | Journal of Applied Physics |
Volume | 85 |
Issue number | 8 II A |
DOIs | |
State | Published - Apr 15 1999 |
Event | Proceedings of the 43rd Annual Conference on Magnetism and Magnetic Materials - Miami, FL, United States Duration: Nov 9 1998 → Nov 12 1998 |
ASJC Scopus subject areas
- General Physics and Astronomy