TY - JOUR
T1 - Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins
AU - Hua, Zhi Ming
AU - Yang, Xianci
AU - Fromm, Michael E.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/9
Y1 - 2006/9
N2 - Mitogen-activated protein (MAP) kinases mediate cellular responses to a wide variety of stimuli. Activation of a MAP kinase (MAPK) occurs after phosphorylation by an upstream MAP kinase kinase (MAPKK). The Arabidopsis thaliana genome encodes 10 MKKs, but few of these have been shown directly to activate any of the 20 Arabidopsis MAPKs (AtMPKs) and NaCl-, drought- or abscisic acid (ABA)-induced genes RD29A or RD29B. We have constructed the coustitutively activated form for nine of the 10 AtMKK proteins, and tested their ability to activate the RD29A and RD29B promoters and also checked the ability of the nine activated AtMKK proteins to phosphorylate 11 of the AtMPK proteins in transient assays. The results show that three proteins, AtMKK1, AtMKK2 and AtMKK3, could activate the RD29A promoter, while these three and two additional AtMKK6/8 proteins could activate the RD29B promoter. Four other proteins, AtMKK7/ AtMKK9 and AtMKK4/AtMKK5, can cause hypersensitive response (HR) in tobacco leaves using transient analysis. The activation of the RD29A promoter correlated with four uniquely activated AtMPK proteins. A novel method of activating AtMPK proteins by fusion to a cis-acting mutant of a human MAPK kinase MEK1 was used to confirm that specific members of the AtMPK gene family can activate the RD29A stress pathway.
AB - Mitogen-activated protein (MAP) kinases mediate cellular responses to a wide variety of stimuli. Activation of a MAP kinase (MAPK) occurs after phosphorylation by an upstream MAP kinase kinase (MAPKK). The Arabidopsis thaliana genome encodes 10 MKKs, but few of these have been shown directly to activate any of the 20 Arabidopsis MAPKs (AtMPKs) and NaCl-, drought- or abscisic acid (ABA)-induced genes RD29A or RD29B. We have constructed the coustitutively activated form for nine of the 10 AtMKK proteins, and tested their ability to activate the RD29A and RD29B promoters and also checked the ability of the nine activated AtMKK proteins to phosphorylate 11 of the AtMPK proteins in transient assays. The results show that three proteins, AtMKK1, AtMKK2 and AtMKK3, could activate the RD29A promoter, while these three and two additional AtMKK6/8 proteins could activate the RD29B promoter. Four other proteins, AtMKK7/ AtMKK9 and AtMKK4/AtMKK5, can cause hypersensitive response (HR) in tobacco leaves using transient analysis. The activation of the RD29A promoter correlated with four uniquely activated AtMPK proteins. A novel method of activating AtMPK proteins by fusion to a cis-acting mutant of a human MAPK kinase MEK1 was used to confirm that specific members of the AtMPK gene family can activate the RD29A stress pathway.
KW - Arabidopsis thaliana
KW - Hypersensitive response
UR - http://www.scopus.com/inward/record.url?scp=33746563990&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746563990&partnerID=8YFLogxK
U2 - 10.1111/j.1365-3040.2006.01552.x
DO - 10.1111/j.1365-3040.2006.01552.x
M3 - Article
C2 - 16913865
AN - SCOPUS:33746563990
SN - 0140-7791
VL - 29
SP - 1761
EP - 1770
JO - Plant, Cell and Environment
JF - Plant, Cell and Environment
IS - 9
ER -