TY - JOUR
T1 - Adding extra-dimensions to hazelnuts primary metabolome fingerprinting by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry featuring tandem ionization
T2 - Insights on the aroma potential
AU - Rosso, Marta Cialiè
AU - Mazzucotelli, Maria
AU - Bicchi, Carlo
AU - Charron, Melanie
AU - Manini, Federica
AU - Menta, Roberto
AU - Fontana, Mauro
AU - Reichenbach, Stephen E.
AU - Cordero, Chiara
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/3/15
Y1 - 2020/3/15
N2 - The information potential of comprehensive two-dimensional gas chromatography combined with time of flight mass spectrometry (GC × GC-TOFMS) featuring tandem hard (70 eV) and soft (12 eV) electron ionization is here applied to accurately delineate high-quality hazelnuts (Corylus avellana L.) primary metabolome fingerprints. The information provided by tandem signals for untargeted and targeted 2D-peaks is examined and exploited with pattern recognition based on template matching algorithms. EI-MS fragmentation pattern similarity, base-peak m/z values at the two examined energies (i.e., 12 and 70 eV) and response relative sensitivity are adopted to evaluate the complementary nature of signals. As challenging bench test, the hazelnut primary metabolome has a large chemical dimensionality that includes various chemical classes such as mono- and disaccharides, amino acids, low-molecular weight acids, and amines, further complicated by oximation/silylation to obtain volatile derivatives. Tandem ionization provides notable benefits including larger relative ratio of structural informing ions due to limited fragmentation at low energies (12 eV), meaningful spectral dissimilarity between 12 and 70 eV (direct match factor values range 222-783) and, for several analytes, enhanced relative sensitivity at lower energies. The complementary information provided by tandem ionization is exploited by untargeted/targeted (UT) fingerprinting on samples from different cultivars and geographical origins. The responses of 138 UT-peak-regions are explored to delineate informative patterns by univariate and multivariate statistics, providing insights on correlations between known precursors and (key)-aroma compounds and potent odorants. Strong positive correlations between non-volatile precursors and odorants are highlighted with some interesting linear trends for: 3-methylbutanal with isoleucine (R2 0.9284); 2,3-butanedione/2,3-pentanedione with monosaccharides (fructose/glucose derivatives) (R2 0.8543 and 0.8860); 2,5-dimethylpyrazine with alanine (R2 0.8822); and pyrroles (1H-pyrrole, 3-methyl-1H-pyrrole, and 1H-pyrrole-2-carboxaldehyde) with ornithine and alanine derivatives (R2 0.8604). The analytical work-flow provides a solid foundation for a new strategy for hazelnuts quality assessment because aroma potential could be derived from precursors’ chemical fingerprints.
AB - The information potential of comprehensive two-dimensional gas chromatography combined with time of flight mass spectrometry (GC × GC-TOFMS) featuring tandem hard (70 eV) and soft (12 eV) electron ionization is here applied to accurately delineate high-quality hazelnuts (Corylus avellana L.) primary metabolome fingerprints. The information provided by tandem signals for untargeted and targeted 2D-peaks is examined and exploited with pattern recognition based on template matching algorithms. EI-MS fragmentation pattern similarity, base-peak m/z values at the two examined energies (i.e., 12 and 70 eV) and response relative sensitivity are adopted to evaluate the complementary nature of signals. As challenging bench test, the hazelnut primary metabolome has a large chemical dimensionality that includes various chemical classes such as mono- and disaccharides, amino acids, low-molecular weight acids, and amines, further complicated by oximation/silylation to obtain volatile derivatives. Tandem ionization provides notable benefits including larger relative ratio of structural informing ions due to limited fragmentation at low energies (12 eV), meaningful spectral dissimilarity between 12 and 70 eV (direct match factor values range 222-783) and, for several analytes, enhanced relative sensitivity at lower energies. The complementary information provided by tandem ionization is exploited by untargeted/targeted (UT) fingerprinting on samples from different cultivars and geographical origins. The responses of 138 UT-peak-regions are explored to delineate informative patterns by univariate and multivariate statistics, providing insights on correlations between known precursors and (key)-aroma compounds and potent odorants. Strong positive correlations between non-volatile precursors and odorants are highlighted with some interesting linear trends for: 3-methylbutanal with isoleucine (R2 0.9284); 2,3-butanedione/2,3-pentanedione with monosaccharides (fructose/glucose derivatives) (R2 0.8543 and 0.8860); 2,5-dimethylpyrazine with alanine (R2 0.8822); and pyrroles (1H-pyrrole, 3-methyl-1H-pyrrole, and 1H-pyrrole-2-carboxaldehyde) with ornithine and alanine derivatives (R2 0.8604). The analytical work-flow provides a solid foundation for a new strategy for hazelnuts quality assessment because aroma potential could be derived from precursors’ chemical fingerprints.
KW - Aroma potential
KW - Comprehensive two-dimensional gas chromatography
KW - High quality hazelnuts
KW - Template matching
KW - Time-of-flight mass spectrometry featuring tandem ionization
KW - UT fingerprinting
UR - http://www.scopus.com/inward/record.url?scp=85075885088&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075885088&partnerID=8YFLogxK
U2 - 10.1016/j.chroma.2019.460739
DO - 10.1016/j.chroma.2019.460739
M3 - Article
C2 - 31796248
AN - SCOPUS:85075885088
SN - 0021-9673
VL - 1614
JO - Journal of Chromatography A
JF - Journal of Chromatography A
M1 - 460739
ER -