TY - JOUR
T1 - Alcohol Increases the Permeability of Airway Epithelial Tight Junctions in Beas-2B and NHBE Cells
AU - Simet, Samantha M.
AU - Wyatt, Todd A.
AU - Devasure, Jane
AU - Yanov, Daniel
AU - Allen-Gipson, Diane
AU - Sisson, Joseph H.
PY - 2012/3
Y1 - 2012/3
N2 - Background: Tight junctions form a continuous belt-like structure between cells and act to regulate paracellular signaling. Protein kinase C (PKC) has been shown to regulate tight junction assembly and disassembly and is activated by alcohol. Previous research has shown that alcohol increases the permeability of tight junctions in lung alveolar cells. However, little is known about alcohol's effect on tight junctions in epithelium of the conducting airways. We hypothesized that long-term alcohol exposure reduces zonula occluden-1 (ZO-1) and claudin-1 localization at the cell membrane and increases permeability through a PKC-dependent mechanism. Methods: To test this hypothesis, we exposed normal human bronchial epithelial (NHBE) cells, cells from a human bronchial epithelial transformed cell line (Beas-2B), and Beas-2B expressing a PKCα dominant negative (DN) to alcohol (20, 50, and 100mM) for up to 48hours. Immunofluorescence was used to assess changes in ZO-1, claudin-1, claudin-5, and claudin-7 localization. Electric cell-substrate impedance sensing was used to measure the permeability of tight junctions between monolayers of NHBE, Beas-2B, and DN cells. Results: Alcohol increased tight junction permeability in a concentration-dependent manner and decreased ZO-1, claudin-1, claudin-5, and claudin-7 localization at the cell membrane. To determine a possible signaling mechanism, we measured the activity of PKC isoforms (alpha, delta, epsilon, and zeta). PKCα activity significantly increased in Beas-2B cells from 1 to 6hours of 100mM alcohol exposure, while PKCζ activity significantly decreased at 1hour and increased at 3hours. Inhibiting PKCα with Gö-6976 prevented the alcohol-induced protein changes in both ZO-1 and claudin-1 at the cell membrane. PKCα DN Beas-2B cells were resistant to alcohol-induced protein alterations. Conclusions: These results suggest that alcohol disrupts ZO-1, claudin-1, claudin-5, and claudin-7 through the activation of PKCα, leading to an alcohol-induced "leakiness" in bronchial epithelial cells. Such alcohol-induced airway-leak state likely contributes to the impaired airway host defenses associated with acute and chronic alcohol ingestion.
AB - Background: Tight junctions form a continuous belt-like structure between cells and act to regulate paracellular signaling. Protein kinase C (PKC) has been shown to regulate tight junction assembly and disassembly and is activated by alcohol. Previous research has shown that alcohol increases the permeability of tight junctions in lung alveolar cells. However, little is known about alcohol's effect on tight junctions in epithelium of the conducting airways. We hypothesized that long-term alcohol exposure reduces zonula occluden-1 (ZO-1) and claudin-1 localization at the cell membrane and increases permeability through a PKC-dependent mechanism. Methods: To test this hypothesis, we exposed normal human bronchial epithelial (NHBE) cells, cells from a human bronchial epithelial transformed cell line (Beas-2B), and Beas-2B expressing a PKCα dominant negative (DN) to alcohol (20, 50, and 100mM) for up to 48hours. Immunofluorescence was used to assess changes in ZO-1, claudin-1, claudin-5, and claudin-7 localization. Electric cell-substrate impedance sensing was used to measure the permeability of tight junctions between monolayers of NHBE, Beas-2B, and DN cells. Results: Alcohol increased tight junction permeability in a concentration-dependent manner and decreased ZO-1, claudin-1, claudin-5, and claudin-7 localization at the cell membrane. To determine a possible signaling mechanism, we measured the activity of PKC isoforms (alpha, delta, epsilon, and zeta). PKCα activity significantly increased in Beas-2B cells from 1 to 6hours of 100mM alcohol exposure, while PKCζ activity significantly decreased at 1hour and increased at 3hours. Inhibiting PKCα with Gö-6976 prevented the alcohol-induced protein changes in both ZO-1 and claudin-1 at the cell membrane. PKCα DN Beas-2B cells were resistant to alcohol-induced protein alterations. Conclusions: These results suggest that alcohol disrupts ZO-1, claudin-1, claudin-5, and claudin-7 through the activation of PKCα, leading to an alcohol-induced "leakiness" in bronchial epithelial cells. Such alcohol-induced airway-leak state likely contributes to the impaired airway host defenses associated with acute and chronic alcohol ingestion.
KW - Airway epithelium
KW - Alcohol
KW - Claudin-1
KW - Lung
KW - Tight junctions
KW - Zonula occluden-1
UR - http://www.scopus.com/inward/record.url?scp=84857504651&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857504651&partnerID=8YFLogxK
U2 - 10.1111/j.1530-0277.2011.01640.x
DO - 10.1111/j.1530-0277.2011.01640.x
M3 - Article
C2 - 21950588
AN - SCOPUS:84857504651
SN - 0145-6008
VL - 36
SP - 432
EP - 442
JO - Alcoholism: Clinical and Experimental Research
JF - Alcoholism: Clinical and Experimental Research
IS - 3
ER -