Abstract
In the current version of the Highway Capacity Manual (HCM-6), equal-capacity passenger car equivalencies (EC-PCEs) are used to account for the effect of trucks for capacity analyses. The EC-PCEs for freeway segments were estimated using a microsimulation-based methodology where the capacities of the mixed-traffic and car-only flow scenarios were modeled. A nonlinear regression (NLR) model was used to develop capacity adjustment factor (CAF) models using the microsimulation data as input. The NLR model has a complex model structure and includes 15 model parameters. It is argued in this paper that simpler regression models could provide comparable results. This would allow CAF and EC-PCE equations to be used directly in the HCM-6 rather than tables. It would also allow for the development of new regression models for exploring new technologies such as connected and automated vehicles (CAVs). The objective of this paper was to develop alternative and simpler regression models of CAFs needed to derive the EC-PCE values in the HCM-6 methodology for freeway and multilane highway segments. It was found that simpler regression models provided similar results as those obtained with the current NLR model. Additionally, it was found that the current NLR model may not be adequate for analyzing CAV traffic conditions. If the HCM-6 EC-PCE methodology is expected to be used to analyze traffic conditions beyond the scope of the HCM-6, it is important to perform a deeper assessment of the form and error of the regression models used in fitting the simulated and estimated data.
Original language | English (US) |
---|---|
Title of host publication | Transportation Research Record |
Publisher | SAGE Publications Ltd |
Pages | 581-596 |
Number of pages | 16 |
Volume | 2675 |
Edition | 7 |
DOIs | |
State | Published - 2021 |
ASJC Scopus subject areas
- Civil and Structural Engineering
- Mechanical Engineering