An Automated Algorithm for the Identification of Somatosensory Cortex Using Magnetoencephalography

Kevin Tyner, Srijita Das, Matthew McCumber, Mustaffa Alfatlawi, Stephen V. Gliske

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The localization of eloquent cortex is crucial for many neurosurgical applications, such as epilepsy and tumor resection. Non-invasive localization of these cortical areas using magnetoencephalography (MEG) is generally performed using equivalent current dipoles. While this method is clinically validated, source localization depends on several subjective parameters. This paper aimed to develop an automated algorithm for identifying the cortical area activated during a somatosensory task from MEG recordings. Our algorithm uses singular value decomposition to outline the cortical area involved in this task. For proof of concept, we evaluate our algorithm using data from 10 subjects with epilepsy. Our algorithm has a statistically significant overlap with the somatosensory cortex (the expected active area in healthy subjects) in 6 of 10 subjects. Having thus demonstrated proof of concept, we conclude that our algorithm is ready for further testing in a larger cohort of subjects.Clinical relevance-Our algorithm identifies the dominant cortical area and boundary of the cortical tissue involved in a task-related response.

Original languageEnglish (US)
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: Jul 24 2023Jul 27 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period7/24/237/27/23

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'An Automated Algorithm for the Identification of Somatosensory Cortex Using Magnetoencephalography'. Together they form a unique fingerprint.

Cite this