Angiotensin type 2 receptor in pancreatic islets of adult rats: A novel insulinotropic mediator

Chunhong Shao, Irving H. Zucker, Lie Gao

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

In the present study, we evaluated the relative abundance of angiotensin type 2 receptor (AT2R) protein in various tissues of adult rats. We found that pancreatic islets expressed the highest AT2R protein compared with all other tissues. Accordingly, we then determined the functional significance of AT2R in the endocrine pancreas in vivo and in vitro experiments by using angiotensin II (ANG II) alone, losartan (Los; AT1R antagonist), compound 21 (C21; AT2R agonist), and PD-123319 (PD; AT2R antagonist). Experiments carried out in rats indicated that, 1) ANG II treatment significantly increased plasma insulin concentration (1.51 ± 0.20 vs. 0.82 ± 0.14 ng/ml, n = 7, P < 0.05) in the fed state. This insulinotropic effect was further augmented by combined treatment with ANG II + Los (2.31 ± 0.25 ng/ml, n = 7, P < 0.01). C21 also elevated insulin levels (2.13 ± 0.20 ng/ml, n = 7, P < 0.01), which was completely abolished by PD. 2) ANG II impaired glucose tolerance, whereas ANG II + Los or C21 improved this function. 3) All treated rats displayed an enhanced insulin secretory response to a glucose challenge. 4) All treated rats displayed upregulated proinsulin 2 mRNA and insulin protein expression in the pancreas. In in vitro experiments using INS-1E cells and isolated rat islets, we found that AT2R activation significantly improved insulin biosynthesis and secretion. These results suggest that the AT2R functions as an insulinotropic mediator. AT2R and its downstream signaling pathways may be potential therapeutic targets for diabetes.

Original languageEnglish (US)
Pages (from-to)E1281-E1291
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume305
Issue number10
DOIs
StatePublished - Nov 15 2013

Keywords

  • Compound 21
  • INS-1E cells
  • Insulin production

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Angiotensin type 2 receptor in pancreatic islets of adult rats: A novel insulinotropic mediator'. Together they form a unique fingerprint.

Cite this