TY - JOUR
T1 - Application of isothermal calorimetry to phosphorus sorption onto soils in a flow-through system
AU - Penn, Chad
AU - Heeren, Derek
AU - Fox, Garey
AU - Kumar, Ajay
PY - 2014/1
Y1 - 2014/1
N2 - The degree, mechanisms, and kinetics of phosphorus (P) sorption onto soils can have a significant influence on leaching losses of P from soil. The objectives of this study were to measure the impact of retention time (RT) on P sorption in a flow-through system intended to simulate downward movement of a P solution through two different riparian soils, and determine if isothermal titration calorimetry (ITC) can provide useful information reflective of flow-through results. Topsoil from two riparian/alluvial sites (Barren Fork and Clear Creek) was sampled and characterized for P concentrations and parameters related to P sorption. Flow-through P sorption experiments were conducted to examine the effect of RT and inflow P concentration on P sorption; this was compared to results of ITC experiments where the heat of reaction was measured with the addition of P to soils. Results of ITC experiments were reflective of both soil characterization and flow-through sorption in that the Barren Fork soil sorbed less P, but at a faster rate, compared to Clear Creek. Based on thermograms, the dominant P sorption reaction was ligand exchange onto Al/Fe oxides/hydroxides, with a lesser degree of precipitation. Phosphorus removal for both soils was limited by physical nonequilibrium instead of chemical nonequilibrium (sorption kinetics). The calorimetry approach presented can help provide soil-specific information on the risk of P inputs to leaching (degree of P sorption) under different conditions (flow rate or RT), and potential for desorption (P sorption mechanisms).
AB - The degree, mechanisms, and kinetics of phosphorus (P) sorption onto soils can have a significant influence on leaching losses of P from soil. The objectives of this study were to measure the impact of retention time (RT) on P sorption in a flow-through system intended to simulate downward movement of a P solution through two different riparian soils, and determine if isothermal titration calorimetry (ITC) can provide useful information reflective of flow-through results. Topsoil from two riparian/alluvial sites (Barren Fork and Clear Creek) was sampled and characterized for P concentrations and parameters related to P sorption. Flow-through P sorption experiments were conducted to examine the effect of RT and inflow P concentration on P sorption; this was compared to results of ITC experiments where the heat of reaction was measured with the addition of P to soils. Results of ITC experiments were reflective of both soil characterization and flow-through sorption in that the Barren Fork soil sorbed less P, but at a faster rate, compared to Clear Creek. Based on thermograms, the dominant P sorption reaction was ligand exchange onto Al/Fe oxides/hydroxides, with a lesser degree of precipitation. Phosphorus removal for both soils was limited by physical nonequilibrium instead of chemical nonequilibrium (sorption kinetics). The calorimetry approach presented can help provide soil-specific information on the risk of P inputs to leaching (degree of P sorption) under different conditions (flow rate or RT), and potential for desorption (P sorption mechanisms).
UR - http://www.scopus.com/inward/record.url?scp=84893324330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893324330&partnerID=8YFLogxK
U2 - 10.2136/sssaj2013.06.0239
DO - 10.2136/sssaj2013.06.0239
M3 - Article
AN - SCOPUS:84893324330
SN - 0361-5995
VL - 78
SP - 147
EP - 156
JO - Soil Science Society of America Journal
JF - Soil Science Society of America Journal
IS - 1
ER -