TY - GEN
T1 - Applying neural networks to classify influenza virus antigenic types and hosts
AU - Attaluri, Pavan K.
AU - Chen, Zhengxin
AU - Lu, Guoqing
PY - 2010
Y1 - 2010
N2 - Influenza viruses continue to evolve rapidly and are responsible for seasonal epidemics and occasional, but catastrophic, pandemics. We recently demonstrated the use of decision tree and support vector machine methods in classifying pandemic swine flu viral strains with high accuracy. Here, we applied the technique of artificial neural networks for the prediction of important influenza virus antigenic types (H1, H3, and H5) and hosts (Human, Avian, and Swine), which fulfills a critical need for a computational system for influenza surveillance. A comprehensive experiment on different k-mers and different binary encoding types showed classification based upon frequencies of k-mer nucleotide strings performed better than transformed binary data of nucleotides. It has been found for the first time that the accuracy of virus classification varies from host to host and from gene segment to gene segment. In particular, compared to avian and swine viruses, human influenza viruses can be classified with high accuracy, which indicates influenza virus strains might have become well adapted to their human host and hence less variation occurs in human viruses. In addition, the accuracy of host classification varies from genome segment to segment, achieving the highest values when using the HA and NA segments for human host classification. This research, along with our previous studies, shows machine learning techniques play an indispensable role in virus classification.
AB - Influenza viruses continue to evolve rapidly and are responsible for seasonal epidemics and occasional, but catastrophic, pandemics. We recently demonstrated the use of decision tree and support vector machine methods in classifying pandemic swine flu viral strains with high accuracy. Here, we applied the technique of artificial neural networks for the prediction of important influenza virus antigenic types (H1, H3, and H5) and hosts (Human, Avian, and Swine), which fulfills a critical need for a computational system for influenza surveillance. A comprehensive experiment on different k-mers and different binary encoding types showed classification based upon frequencies of k-mer nucleotide strings performed better than transformed binary data of nucleotides. It has been found for the first time that the accuracy of virus classification varies from host to host and from gene segment to gene segment. In particular, compared to avian and swine viruses, human influenza viruses can be classified with high accuracy, which indicates influenza virus strains might have become well adapted to their human host and hence less variation occurs in human viruses. In addition, the accuracy of host classification varies from genome segment to segment, achieving the highest values when using the HA and NA segments for human host classification. This research, along with our previous studies, shows machine learning techniques play an indispensable role in virus classification.
UR - http://www.scopus.com/inward/record.url?scp=77955633246&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955633246&partnerID=8YFLogxK
U2 - 10.1109/CIBCB.2010.5510726
DO - 10.1109/CIBCB.2010.5510726
M3 - Conference contribution
AN - SCOPUS:77955633246
SN - 9781424467662
T3 - 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2010
SP - 279
EP - 284
BT - 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2010
T2 - 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2010
Y2 - 2 May 2010 through 5 May 2010
ER -