Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia

Siba El Hussein, Pingjun Chen, L. Jeffrey Medeiros, Ignacio I. Wistuba, David Jaffray, Jia Wu, Joseph D. Khoury

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Artificial intelligence-based tools designed to assist in the diagnosis of lymphoid neoplasms remain limited. The development of such tools can add value as a diagnostic aid in the evaluation of tissue samples involved by lymphoma. A common diagnostic question is the determination of chronic lymphocytic leukemia (CLL) progression to accelerated CLL (aCLL) or transformation to diffuse large B-cell lymphoma (Richter transformation; RT) in patients who develop progressive disease. The morphologic assessment of CLL, aCLL, and RT can be diagnostically challenging. Using established diagnostic criteria of CLL progression/transformation, we designed four artificial intelligence-constructed biomarkers based on cytologic (nuclear size and nuclear intensity) and architectural (cellular density and cell to nearest-neighbor distance) features. We analyzed the predictive value of implementing these biomarkers individually and then in an iterative sequential manner to distinguish tissue samples with CLL, aCLL, and RT. Our model, based on these four morphologic biomarker attributes, achieved a robust analytic accuracy. This study suggests that biomarkers identified using artificial intelligence-based tools can be used to assist in the diagnostic evaluation of tissue samples from patients with CLL who develop aggressive disease features.

Original languageEnglish (US)
Pages (from-to)4-14
Number of pages11
JournalJournal of Pathology
Volume256
Issue number1
DOIs
StatePublished - Jan 2022
Externally publishedYes

Keywords

  • CLL/SLL
  • Richter transformation
  • accelerated CLL
  • architecture
  • artificial intelligence
  • cellular biomarker
  • deep learning
  • disease progression
  • large B-cell lymphoma
  • small lymphocytic lymphoma

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Fingerprint

Dive into the research topics of 'Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia'. Together they form a unique fingerprint.

Cite this