TY - JOUR
T1 - Assessing yield and economic impact of introducing soybean to the lowland rice system in southern Brazil
AU - Ribas, Giovana Ghisleni
AU - Zanon, Alencar Junior
AU - Streck, Nereu Augusto
AU - Pilecco, Isabela Bulegon
AU - de Souza, Pablo Mazzuco
AU - Heinemann, Alexandre Bryan
AU - Grassini, Patricio
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/3
Y1 - 2021/3
N2 - Lowland irrigated rice in southern Brazil is typically grown in monoculture, with one rice crop per year. However, during the past 10 years, some farmers have switched from the traditional continuous rice system to a 2-y soybean-rice rotation. Here we performed an on-farm assessment about the impact of introducing soybean to the lowland continuous rice system in southern Brazil. The goal was to determine how the soybean-rice rotation compared to continuous rice in terms of yield and profit. We used farmer-reported survey data collected from lowland rice-based systems in southern Brazil over three growing seasons. Cropping-system yield, profit, and return-to-inputs were compared between fields following continuous rice versus soybean–rice rotation. In addition to the survey data analysis, we evaluated the long-term economic impact of adopting the rotation using a combination of a crop simulation model and Monte-Carlo stochastic modeling. Average rice yield was 26% higher in the rotation compared to continuous rice. Besides the rotation effect, sowing date, N fertilizer, and weed management explained most of the field-to-field variability in rice yield. Cropping-system yield and gross income were lower in the soybean-rice rotation than in continuous rice as a result of replacing an irrigated crop (rice) by a water-limited rainfed crop (soybean). Despite that yield penalty, there was no difference in net economic return between the two cropping systems due to lower production costs in soybean-rice rotation compared to continuous rice. The rotation also exhibited smaller labor requirement and higher benefit-to-cost ratio and return to labor than continuous rice. Despite these potential benefits, our long-term analysis indicated higher inter-annual variability and economic risk in the rotation compared to continuous rice. Other factors further constrain adoption of the soybean-rice rotation, including the high risk of growing soybean in fields that are prone to excess water and difficulties to change current farm logistics. Findings from this study are relevant to other rice-based systems in the world looking for opportunities to increase or maintain net profit while reducing costs and/or labor.
AB - Lowland irrigated rice in southern Brazil is typically grown in monoculture, with one rice crop per year. However, during the past 10 years, some farmers have switched from the traditional continuous rice system to a 2-y soybean-rice rotation. Here we performed an on-farm assessment about the impact of introducing soybean to the lowland continuous rice system in southern Brazil. The goal was to determine how the soybean-rice rotation compared to continuous rice in terms of yield and profit. We used farmer-reported survey data collected from lowland rice-based systems in southern Brazil over three growing seasons. Cropping-system yield, profit, and return-to-inputs were compared between fields following continuous rice versus soybean–rice rotation. In addition to the survey data analysis, we evaluated the long-term economic impact of adopting the rotation using a combination of a crop simulation model and Monte-Carlo stochastic modeling. Average rice yield was 26% higher in the rotation compared to continuous rice. Besides the rotation effect, sowing date, N fertilizer, and weed management explained most of the field-to-field variability in rice yield. Cropping-system yield and gross income were lower in the soybean-rice rotation than in continuous rice as a result of replacing an irrigated crop (rice) by a water-limited rainfed crop (soybean). Despite that yield penalty, there was no difference in net economic return between the two cropping systems due to lower production costs in soybean-rice rotation compared to continuous rice. The rotation also exhibited smaller labor requirement and higher benefit-to-cost ratio and return to labor than continuous rice. Despite these potential benefits, our long-term analysis indicated higher inter-annual variability and economic risk in the rotation compared to continuous rice. Other factors further constrain adoption of the soybean-rice rotation, including the high risk of growing soybean in fields that are prone to excess water and difficulties to change current farm logistics. Findings from this study are relevant to other rice-based systems in the world looking for opportunities to increase or maintain net profit while reducing costs and/or labor.
KW - Lowland environment
KW - Profit
KW - Rice
KW - Soybean
KW - Yield
UR - http://www.scopus.com/inward/record.url?scp=85098214478&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098214478&partnerID=8YFLogxK
U2 - 10.1016/j.agsy.2020.103036
DO - 10.1016/j.agsy.2020.103036
M3 - Article
AN - SCOPUS:85098214478
SN - 0308-521X
VL - 188
JO - Agricultural Systems
JF - Agricultural Systems
M1 - 103036
ER -