Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice

Runze Ma, Duanyun Cao, Chongqin Zhu, Ye Tian, Jinbo Peng, Jing Guo, Ji Chen, Xin Zheng Li, Joseph S. Francisco, Xiao Cheng Zeng, Li Mei Xu, En Ge Wang, Ying Jiang

Research output: Contribution to journalArticlepeer-review

41 Scopus citations


The formation and growth of water-ice layers on surfaces and of low-dimensional ice under confinement are frequent occurrences1–4. This is exemplified by the extensive reporting of two-dimensional (2D) ice on metals5–11, insulating surfaces12–16, graphite and graphene17,18 and under strong confinement14,19–22. Although structured water adlayers and 2D ice have been imaged, capturing the metastable or intermediate edge structures involved in the 2D ice growth, which could reveal the underlying growth mechanisms, is extremely challenging, owing to the fragility and short lifetime of those edge structures. Here we show that noncontact atomic-force microscopy with a CO-terminated tip (used previously to image interfacial water with minimal perturbation)12, enables real-space imaging of the edge structures of 2D bilayer hexagonal ice grown on a Au(111) surface. We find that armchair-type edges coexist with the zigzag edges usually observed in 2D hexagonal crystals, and freeze these samples during growth to identify the intermediate edge structures. Combined with simulations, these experiments enable us to reconstruct the growth processes that, in the case of the zigzag edge, involve the addition of water molecules to the existing edge and a collective bridging mechanism. Armchair edge growth, by contrast, involves local seeding and edge reconstruction and thus contrasts with conventional views regarding the growth of bilayer hexagonal ices and 2D hexagonal matter in general.

Original languageEnglish (US)
Pages (from-to)60-63
Number of pages4
Issue number7788
StatePublished - Jan 2 2020

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice'. Together they form a unique fingerprint.

Cite this