Bioremediation of trichloroethylene-polluted groundwater using emulsified castor oil for slow carbon release and acidification control

Wei Ting Chen, Ku Fan Chen, Rao Y. Surmpalli, Tian C. Zhang, Jiun Hau Ou, Chih Ming Kao

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, the emulsified castor oil (ECO) substrate was developed for a long-term supplement of biodegradable carbon with pH buffering capacity to anaerobically bioremediate trichloroethylene (TCE)-polluted groundwater. The ECO was produced by mixing castor oil, surfactants (sapindales and soya lecithin [SL]), vitamin complex, and a citrate/sodium phosphate dibasic buffer system together for slow carbon release. Results of the emulsification experiments and microcosm tests indicate that ECO emulsion had uniform small droplets (diameter = 539 nm) with stable oil-in-water characteristics. ECO had a long-lasting, dispersive, negative zeta potential (−13 mv), and biodegradable properties (viscosity = 357 cp). Approximately 97% of TCE could be removed with ECO supplement after a 95-day operational period without the accumulation of TCE dechlorination byproducts (dichloroethylene and vinyl chloride). The buffer system could neutralize acidified groundwater, and citrate could be served as a primary substrate. ECO addition caused an abrupt TCE adsorption at the initial stage and the subsequent removal of adsorbed TCE. Results from the next generation sequences and real-time polymerase chain reaction (PCR) indicate that the increased microbial communities and TCE-degrading bacterial consortia were observed after ECO addition. ECO could be used as a pH-control and carbon substrate to enhance anaerobic TCE biodegradation effectively. Practitioner Points: Emulsified castor oil (ECO) contains castor oil, surfactants, and buffer for a slow carbon release and pH control. ECO can be a long-term carbon source for trichloroethylene (TCE) dechlorination without causing acidification. TCE removal after ECO addition is due to adsorption and reductive dechlorination mechanisms.

Original languageEnglish (US)
Article numbere1673
JournalWater Environment Research
Volume94
Issue number1
DOIs
StatePublished - Jan 2022

ASJC Scopus subject areas

  • Environmental Chemistry
  • Ecological Modeling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Bioremediation of trichloroethylene-polluted groundwater using emulsified castor oil for slow carbon release and acidification control'. Together they form a unique fingerprint.

Cite this