TY - JOUR
T1 - BK-β1 subunit
T2 - Immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion
AU - Pluznick, Jennifer L.
AU - Wei, Peilin
AU - Grimm, P. Richard
AU - Sansom, Steven C.
PY - 2005/4
Y1 - 2005/4
N2 - Large, Ca2+-activated K+ channels (BK), comprised of α- and β-subunits, mediate K+ secretion during high flow rates in distal nephron segments. Because the BK-β1 subunit enhances Ca2+ sensitivity of BK in a variety of cells, we determined its role in flow-induced K+ secretion and its localization in the mammalian nephron. To determine the role of BK-β1 in the kaliuretic response to volume expansion, the rate of K+ excretion (UKV) vs. varied urinary flow rates were determined in wild-type and BK-β1 knockout mice (BK-β1-/-). When flow rate was varied by volume expansion (2 ml·h-1·25 g body wt-1) for 30 to 60 min in wild-type mice, we found that the UKV increased significantly with increasing urine flow rates (r2 = 0.50, P < 0.00001, n = 31), as demonstrated previously in distal nephron of rats and rabbits. However, in BK-β1-/- mice, UKV did not vary with changing flow rates (r2 = 0.15, P = 0.08, n = 20). Using immunohistochemical techniques, we found that BK-β1 was strongly expressed in the apical membrane of the murine distal nephron and that 98% of BK-β1 protein detected by histochemistry colocalized with NCX, a marker of connecting tubules (CNT). Both BK-β1 and NCX colocalized with BK-α in separate experiments. Furthermore, we confirmed BK-β1 protein expression in the apical membrane of connecting tubules in rabbits. BK-β1 RNA from rabbit CNT was sequenced and was identical to previously published rabbit muscle sequences. These data show that the BK-β1 accessory subunit is present in the CNT segment of the mammalian distal nephron and has a significant role in the kaliuretic response to increased urinary flow induced by volume expansion.
AB - Large, Ca2+-activated K+ channels (BK), comprised of α- and β-subunits, mediate K+ secretion during high flow rates in distal nephron segments. Because the BK-β1 subunit enhances Ca2+ sensitivity of BK in a variety of cells, we determined its role in flow-induced K+ secretion and its localization in the mammalian nephron. To determine the role of BK-β1 in the kaliuretic response to volume expansion, the rate of K+ excretion (UKV) vs. varied urinary flow rates were determined in wild-type and BK-β1 knockout mice (BK-β1-/-). When flow rate was varied by volume expansion (2 ml·h-1·25 g body wt-1) for 30 to 60 min in wild-type mice, we found that the UKV increased significantly with increasing urine flow rates (r2 = 0.50, P < 0.00001, n = 31), as demonstrated previously in distal nephron of rats and rabbits. However, in BK-β1-/- mice, UKV did not vary with changing flow rates (r2 = 0.15, P = 0.08, n = 20). Using immunohistochemical techniques, we found that BK-β1 was strongly expressed in the apical membrane of the murine distal nephron and that 98% of BK-β1 protein detected by histochemistry colocalized with NCX, a marker of connecting tubules (CNT). Both BK-β1 and NCX colocalized with BK-α in separate experiments. Furthermore, we confirmed BK-β1 protein expression in the apical membrane of connecting tubules in rabbits. BK-β1 RNA from rabbit CNT was sequenced and was identical to previously published rabbit muscle sequences. These data show that the BK-β1 accessory subunit is present in the CNT segment of the mammalian distal nephron and has a significant role in the kaliuretic response to increased urinary flow induced by volume expansion.
KW - Distal nephron
KW - Flow-mediated K secretion
KW - Maxi K
UR - http://www.scopus.com/inward/record.url?scp=15044354632&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=15044354632&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00340.2004
DO - 10.1152/ajprenal.00340.2004
M3 - Article
C2 - 15613616
AN - SCOPUS:15044354632
SN - 1931-857X
VL - 288
SP - F846-F854
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 4 57-4
ER -