TY - JOUR
T1 - Bovine herpesvirus 1 can infect CD4+ T lymphocytes and induce programmed cell death during acute infection of cattle
AU - Winkler, M. T.C.
AU - Doster, A.
AU - Jones, C.
PY - 1999
Y1 - 1999
N2 - Acute infection of cattle with bovine herpesvirus 1 (BHV-1) represses cell-mediated immunity, which can lead to secondary bacterial infections. Since BHV-1 can induce apoptosis of cultured lymphocytes, we hypothesized that these virus-host interactions occur in cattle. To test this hypothesis, we analyzed lymph nodes and peripheral blood mononuclear cells (PBMC) after calves were infected with BHV-1. In situ terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining of lymphoid tissues (pharyngeal tonsil, cervical, retropharyngeal, and inguinal) was used to detect apoptotic cells. Calves infected with BHV-1 for 7 days revealed increased apoptotic cells near the corticomedullary junction in lymphoid follicles and in the subcapsular region. Increased frequency of apoptotic cells was also observed in the mucosa-associated lymphoid tissue lining the trachea and turbinate. Immunohistochemistry of consecutive sections from pharyngeal tonsil revealed that CD2+ T lymphocytes were positive for the BHV-1 envelope glycoprotein gD. The location of these CD2+ T lymphocytes in the germinal center suggested that they were CD4+ T cells. Electron microscopy and TUNEL also revealed apoptotic and herpesvirus- infected lymphocytes from this area. Fluorescence-activated cell sorting analyses demonstrated that CD4+ and CD8+ T cells decreased in lymph nodes and PBMC after infection. The decrease in CD4+ T cells correlated with an increase in apoptosis. CD4+ but not CD8+ lymphocytes were infected by BHV-1 as judged by in situ hybridization and PCR, respectively. Immediate-early (bovine ICP0) and early (ribonucleotide reductase) transcripts were detected in PBMC and CD4+ lymphocytes prepared from infected calves. In contrast, a late transcript (glycoprotein C) was not consistently detected suggesting productive infection was not efficient. Taken together, these results indicate that BHV-1 can infect CD4+ T cells in cattle, leading to apoptosis and suppression of cell-mediated immunity.
AB - Acute infection of cattle with bovine herpesvirus 1 (BHV-1) represses cell-mediated immunity, which can lead to secondary bacterial infections. Since BHV-1 can induce apoptosis of cultured lymphocytes, we hypothesized that these virus-host interactions occur in cattle. To test this hypothesis, we analyzed lymph nodes and peripheral blood mononuclear cells (PBMC) after calves were infected with BHV-1. In situ terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining of lymphoid tissues (pharyngeal tonsil, cervical, retropharyngeal, and inguinal) was used to detect apoptotic cells. Calves infected with BHV-1 for 7 days revealed increased apoptotic cells near the corticomedullary junction in lymphoid follicles and in the subcapsular region. Increased frequency of apoptotic cells was also observed in the mucosa-associated lymphoid tissue lining the trachea and turbinate. Immunohistochemistry of consecutive sections from pharyngeal tonsil revealed that CD2+ T lymphocytes were positive for the BHV-1 envelope glycoprotein gD. The location of these CD2+ T lymphocytes in the germinal center suggested that they were CD4+ T cells. Electron microscopy and TUNEL also revealed apoptotic and herpesvirus- infected lymphocytes from this area. Fluorescence-activated cell sorting analyses demonstrated that CD4+ and CD8+ T cells decreased in lymph nodes and PBMC after infection. The decrease in CD4+ T cells correlated with an increase in apoptosis. CD4+ but not CD8+ lymphocytes were infected by BHV-1 as judged by in situ hybridization and PCR, respectively. Immediate-early (bovine ICP0) and early (ribonucleotide reductase) transcripts were detected in PBMC and CD4+ lymphocytes prepared from infected calves. In contrast, a late transcript (glycoprotein C) was not consistently detected suggesting productive infection was not efficient. Taken together, these results indicate that BHV-1 can infect CD4+ T cells in cattle, leading to apoptosis and suppression of cell-mediated immunity.
UR - http://www.scopus.com/inward/record.url?scp=0032849326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032849326&partnerID=8YFLogxK
U2 - 10.1128/jvi.73.10.8657-8668.1999
DO - 10.1128/jvi.73.10.8657-8668.1999
M3 - Article
C2 - 10482619
AN - SCOPUS:0032849326
SN - 0022-538X
VL - 73
SP - 8657
EP - 8668
JO - Journal of virology
JF - Journal of virology
IS - 10
ER -