TY - JOUR
T1 - Building digital twins of the human immune system
T2 - toward a roadmap
AU - Laubenbacher, R.
AU - Niarakis, A.
AU - Helikar, T.
AU - An, G.
AU - Shapiro, B.
AU - Malik-Sheriff, R. S.
AU - Sego, T. J.
AU - Knapp, A.
AU - Macklin, P.
AU - Glazier, J. A.
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Digital twins, customized simulation models pioneered in industry, are beginning to be deployed in medicine and healthcare, with some major successes, for instance in cardiovascular diagnostics and in insulin pump control. Personalized computational models are also assisting in applications ranging from drug development to treatment optimization. More advanced medical digital twins will be essential to making precision medicine a reality. Because the immune system plays an important role in such a wide range of diseases and health conditions, from fighting pathogens to autoimmune disorders, digital twins of the immune system will have an especially high impact. However, their development presents major challenges, stemming from the inherent complexity of the immune system and the difficulty of measuring many aspects of a patient’s immune state in vivo. This perspective outlines a roadmap for meeting these challenges and building a prototype of an immune digital twin. It is structured as a four-stage process that proceeds from a specification of a concrete use case to model constructions, personalization, and continued improvement.
AB - Digital twins, customized simulation models pioneered in industry, are beginning to be deployed in medicine and healthcare, with some major successes, for instance in cardiovascular diagnostics and in insulin pump control. Personalized computational models are also assisting in applications ranging from drug development to treatment optimization. More advanced medical digital twins will be essential to making precision medicine a reality. Because the immune system plays an important role in such a wide range of diseases and health conditions, from fighting pathogens to autoimmune disorders, digital twins of the immune system will have an especially high impact. However, their development presents major challenges, stemming from the inherent complexity of the immune system and the difficulty of measuring many aspects of a patient’s immune state in vivo. This perspective outlines a roadmap for meeting these challenges and building a prototype of an immune digital twin. It is structured as a four-stage process that proceeds from a specification of a concrete use case to model constructions, personalization, and continued improvement.
UR - http://www.scopus.com/inward/record.url?scp=85130503166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130503166&partnerID=8YFLogxK
U2 - 10.1038/s41746-022-00610-z
DO - 10.1038/s41746-022-00610-z
M3 - Review article
C2 - 35595830
AN - SCOPUS:85130503166
SN - 2398-6352
VL - 5
JO - npj Digital Medicine
JF - npj Digital Medicine
IS - 1
M1 - 64
ER -