TY - JOUR
T1 - Catechol estrogen metabolites and conjugates in different regions of the prostate of Noble rats treated with 4-hydroxyestradiol
T2 - Implications for estrogen-induced initiation of prostate cancer
AU - Cavalieri, Ercole L.
AU - Devanesan, Prabu
AU - Bosland, Maarten C.
AU - Badawi, Alaa F.
AU - Rogan, Eleanor G.
PY - 2002
Y1 - 2002
N2 - Prostate carcinomas arise in 100% of Noble rats treated with estradiol and testosterone. We hypothesize that estrogens initiate prostate cancer mainly by formation of 4-catechol estrogens (CE), followed by their oxidation to catechol estrogen-3,4-quinones (CE-3,4-Q), which can react with DNA. To avoid cancer initiation, CE can be detoxified by catechol-O-methyltransferase (COMT), and CE-3,4-Q by conjugation with glutathione (GSH) or by reduction to CE, catalyzed by quinone reductase and/or cytochrome P450 reductase. To investigate the prostatic metabolism of estrogens, Noble rats were treated with the CE 4-hydroxyestradiol (4-OHE2) or estradiol-3,4-quinone (E2-3,4-Q), and CE metabolites and conjugates were analyzed in the four regions of the prostate, which differ in susceptibility to carcinoma formation. Following treatment of rats with 4-OHE2 (6 μmol/100 g body weight in 200 μl of trioctanoin/dimethylsulfoxide (4:1) by intraperitoneal injection) for 90 min, the non-susceptible ventral (VP) and anterior (AP) prostate had higher levels of 4-methoxyCE and GSH conjugates than the susceptible dorsolateral prostate (DLP) and periurethral prostate (PUP). After treatment with the same molar amount of E2-3,4-Q, the VP and AP contained more GSH conjugates, 4-CE and 4-methoxyCE than the susceptible DLP and PUP. These results suggest that prostate areas susceptible to carcinoma induction have less protection by COMT, GSH, and quinone reductase and/or cytochrome P450 reductase, favoring reaction of CE-3,4-Q with DNA, presumably to initiate cancer.
AB - Prostate carcinomas arise in 100% of Noble rats treated with estradiol and testosterone. We hypothesize that estrogens initiate prostate cancer mainly by formation of 4-catechol estrogens (CE), followed by their oxidation to catechol estrogen-3,4-quinones (CE-3,4-Q), which can react with DNA. To avoid cancer initiation, CE can be detoxified by catechol-O-methyltransferase (COMT), and CE-3,4-Q by conjugation with glutathione (GSH) or by reduction to CE, catalyzed by quinone reductase and/or cytochrome P450 reductase. To investigate the prostatic metabolism of estrogens, Noble rats were treated with the CE 4-hydroxyestradiol (4-OHE2) or estradiol-3,4-quinone (E2-3,4-Q), and CE metabolites and conjugates were analyzed in the four regions of the prostate, which differ in susceptibility to carcinoma formation. Following treatment of rats with 4-OHE2 (6 μmol/100 g body weight in 200 μl of trioctanoin/dimethylsulfoxide (4:1) by intraperitoneal injection) for 90 min, the non-susceptible ventral (VP) and anterior (AP) prostate had higher levels of 4-methoxyCE and GSH conjugates than the susceptible dorsolateral prostate (DLP) and periurethral prostate (PUP). After treatment with the same molar amount of E2-3,4-Q, the VP and AP contained more GSH conjugates, 4-CE and 4-methoxyCE than the susceptible DLP and PUP. These results suggest that prostate areas susceptible to carcinoma induction have less protection by COMT, GSH, and quinone reductase and/or cytochrome P450 reductase, favoring reaction of CE-3,4-Q with DNA, presumably to initiate cancer.
UR - http://www.scopus.com/inward/record.url?scp=0036121516&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036121516&partnerID=8YFLogxK
U2 - 10.1093/carcin/23.2.329
DO - 10.1093/carcin/23.2.329
M3 - Article
C2 - 11872641
AN - SCOPUS:0036121516
SN - 0143-3334
VL - 23
SP - 329
EP - 333
JO - Carcinogenesis
JF - Carcinogenesis
IS - 2
ER -