Central angiotensin II-Protein inhibitor of neuronal nitric oxide synthase (PIN) axis contribute to neurogenic hypertension

Neeru M. Sharma, Andrea S. Haibara, Kenichi Katsurada, Xuefei Liu, Kaushik P. Patel

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Activation of renin-angiotensin- system, nitric oxide (NO•) bioavailability and subsequent sympathoexcitation plays a pivotal role in the pathogenesis of many cardiovascular diseases, including hypertension. Previously we have shown increased protein expression of PIN (a protein inhibitor of nNOS: neuronal nitric oxide synthase, known to dissociate nNOS dimers into monomers) with concomitantly reduced levels of catalytically active dimers of nNOS in the PVN of rats with heart failure. To elucidate the molecular mechanism by which Angiotensin II (Ang II) increases PIN expression, we used Sprague-Dawley rats (250–300 g) subjected to intracerebroventricular infusion of Ang II (20 ng/min, 0.5 μl/h) or saline as vehicle (Veh) for 14 days through osmotic mini-pumps and NG108-15 hybrid neuronal cell line treated with Ang II as an in vitro model. Ang II infusion significantly increased baseline renal sympathetic nerve activity and mean arterial pressure. Ang II infusion increased the expression of PIN (1.24 ± 0.04* Ang II vs. 0.65 ± 0.07 Veh) with a concomitant 50% decrease in dimeric nNOS and PIN-Ub conjugates (0.73 ± 0.04* Ang II vs. 1.00 ± 0.03 Veh) in the PVN. Substrate-dependent ligase assay in cells transfected with pCMV-(HA-Ub)8 vector revealed a reduction of HA-Ub-PIN conjugates after Ang II and a proteasome inhibitor, Lactacystin (LC), treatment (4.5 ± 0.7* LC Ang II vs. 9.2 ± 2.5 LC). TUBE (Tandem Ubiquitin-Binding Entities) assay showed decrease PIN-Ub conjugates in Ang II-treated cells (0.82 ± 0.12* LC Ang II vs. 1.21 ± 0.06 LC) while AT1R blocker, Losartan (Los) treatment diminished the Ang II-mediated stabilization of PIN (1.21 ± 0.07 LC Los vs. 1.16 ± 0.04* LC Ang II Los). Taken together, our studies suggest that increased central levels of Ang II contribute to the enhanced expression of PIN leading to reduced expression of the dimeric form of nNOS, thus diminishing the inhibitory action of NO• on pre-autonomic neurons in the PVN resulting in increased sympathetic outflow.

Original languageEnglish (US)
Pages (from-to)54-62
Number of pages9
JournalNitric Oxide - Biology and Chemistry
StatePublished - Jan 1 2020


  • Angiotensin II
  • Neurogenic hypertension
  • Paraventricular nucleus
  • nNOS

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Clinical Biochemistry
  • Cancer Research


Dive into the research topics of 'Central angiotensin II-Protein inhibitor of neuronal nitric oxide synthase (PIN) axis contribute to neurogenic hypertension'. Together they form a unique fingerprint.

Cite this