TY - JOUR
T1 - Chlorella virus-encoded deoxyuridine triphosphatases exhibit different temperature optima
AU - Zhang, Yuanzheng
AU - Moriyama, Hideaki
AU - Homma, Kohei
AU - Van Etten, James L.
PY - 2005/8
Y1 - 2005/8
N2 - A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg2+ for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a Km of 11.7 μM, a turnover kcat of 6.8 s-1, and a catalytic efficiency of kcat/Km = 5.8 × 105 M -1 s-1. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37°C) than PBCV-1 dUTPase (50°C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81→Ser81 and Thr84→Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84→Arg84, Glu81→Ser81, and Glu81→Ser81 plus Thr84→Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55°C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.
AB - A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg2+ for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a Km of 11.7 μM, a turnover kcat of 6.8 s-1, and a catalytic efficiency of kcat/Km = 5.8 × 105 M -1 s-1. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37°C) than PBCV-1 dUTPase (50°C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81→Ser81 and Thr84→Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84→Arg84, Glu81→Ser81, and Glu81→Ser81 plus Thr84→Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55°C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.
UR - http://www.scopus.com/inward/record.url?scp=22544463385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22544463385&partnerID=8YFLogxK
U2 - 10.1128/JVI.79.15.9945-9953.2005
DO - 10.1128/JVI.79.15.9945-9953.2005
M3 - Article
C2 - 16014955
AN - SCOPUS:22544463385
SN - 0022-538X
VL - 79
SP - 9945
EP - 9953
JO - Journal of virology
JF - Journal of virology
IS - 15
ER -