Chlorovirus ATCV-1 Accelerates Motor Deterioration in SOD1-G93A Transgenic Mice and Its SOD1 Augments Induction of Inflammatory Factors From Murine Macrophages

Thomas M. Petro, Irina V. Agarkova, Ahmed Esmael, David D. Dunigan, James L. Van Etten, Gary L. Pattee

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Background: Genetically polymorphic Superoxide Dismutase 1 G93A (SOD1-G93A) underlies one form of familial Amyotrophic Lateral Sclerosis (ALS). Exposures from viruses may also contribute to ALS, possibly by stimulating immune factors, such as IL-6, Interferon Stimulated Genes, and Nitric Oxide. Recently, chlorovirus ATCV-1, which encodes a SOD1, was shown to replicate in macrophages and induce inflammatory factors. Objective: This study aimed to determine if ATCV-1 influences development of motor degeneration in an ALS mouse model and to assess whether SOD1 of ATCV-1 influences production of inflammatory factors from macrophages. Methods: Sera from sporadic ALS patients were screened for antibody to ATCV-1. Active or inactivated ATCV-1, saline, or a viral mimetic, polyinosinic:polycytidylic acid (poly I:C) were injected intracranially into transgenic mice expressing human SOD1-G93A- or C57Bl/6 mice. RAW264.7 mouse macrophage cells were transfected with a plasmid vector expressing ATCV-1 SOD1 or an empty vector prior to stimulation with poly I:C with or without Interferon-gamma (IFN-γ). Results: Serum from sporadic ALS patients had significantly more IgG1 antibody directed against ATCV-1 than healthy controls. Infection of SOD1-G93A mice with active ATCV-1 significantly accelerated onset of motor loss, as measured by tail paralysis, hind limb tucking, righting reflex, and latency to fall in a hanging cage-lid test, but did not significantly affect mortality when compared to saline-treated transgenics. By contrast, poly I:C treatment significantly lengthened survival time but only minimally slowed onset of motor loss, while heat-inactivated ATCV-1 did not affect motor loss or survival. ATCV-1 SOD1 significantly increased expression of IL-6, IL-10, ISG promoter activity, and production of Nitric Oxide from RAW264.7 cells. Conclusion: ATCV-1 chlorovirus encoding an endogenous SOD1 accelerates pathogenesis but not mortality, while poly I:C that stimulates antiviral immune responses delays mortality in an ALS mouse model. ATCV-1 SOD1 enhances induction of inflammatory factors from macrophages.

Original languageEnglish (US)
Article number821166
JournalFrontiers in Neurology
StatePublished - Feb 24 2022


  • ALS
  • ATCV-1
  • SOD1-G93A mice
  • chlorovirus
  • motor neuron diseases

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology


Dive into the research topics of 'Chlorovirus ATCV-1 Accelerates Motor Deterioration in SOD1-G93A Transgenic Mice and Its SOD1 Augments Induction of Inflammatory Factors From Murine Macrophages'. Together they form a unique fingerprint.

Cite this