TY - JOUR
T1 - Cleavage of human transferrin by Porphyromonas gingivalis gingipains promotes growth and formation of hydroxyl radicals
AU - Goulet, Véronique
AU - Britigan, Bradley
AU - Nakayama, Koji
AU - Grenier, Daniel
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/8
Y1 - 2004/8
N2 - Porphyromonas gingivalis, a gram-negative anaerobic bacterium associated with active lesions of chronic periodontitis, produces several proteinases which are presumably involved in host colonization, perturbation of the immune system, and tissue destruction. The aims of this study were to investigate the degradation of human transferrin by gingipain cysteine proteinases of P. gingivalis and to demonstrate the production of toxic hydroxyl radicals (HO .) catalyzed by the iron-containing transferrin fragments generated or by release of iron itself. Analysis by polyacrylamide gel electrophoresis and Western immunoblotting showed that preparations of Arg- and Lys-gingipains of P. gingivalis cleave transferrin (iron-free and iron-saturated forms) into fragments of various sizes. Interestingly, gingival crevicular fluid samples from diseased periodontal sites but not samples from healthy periodontal sites contained fragments of transferrin. By using 55Fe-transferrin, it was found that degradation by P. gingivalis gingipains resulted in the production of free iron, as well as iron bound to lower-molecular-mass fragments. Subsequent to the degradation of transferrin, bacterial cells assimilated intracellularly the radiolabeled iron. Growth of P. gingivalis ATCC 33277, but not growth of an Arg-gingipain- and Lys-gingipain-deficient mutant, was possible in a chemically defined medium containing 30% iron-saturated transferrin as the only source of iron and peptides, suggesting that gingipains play a critical role in the acquisition of essential growth nutrients. Finally, the transferrin degradation products generated by Arg-gingipains A and B were capable of catalyzing the formation of HO., as determined by a hypoxanthine/ xanthine oxidase system and spin trapping-electron paramagnetic resonance spectrometry. Our study indicates that P. gingivalis gingipains degrade human transferrin, providing sources of iron and peptides. The iron-containing transferrin fragments or the release of iron itself may contribute to tissue destruction by catalyzing the formation of toxic HO..
AB - Porphyromonas gingivalis, a gram-negative anaerobic bacterium associated with active lesions of chronic periodontitis, produces several proteinases which are presumably involved in host colonization, perturbation of the immune system, and tissue destruction. The aims of this study were to investigate the degradation of human transferrin by gingipain cysteine proteinases of P. gingivalis and to demonstrate the production of toxic hydroxyl radicals (HO .) catalyzed by the iron-containing transferrin fragments generated or by release of iron itself. Analysis by polyacrylamide gel electrophoresis and Western immunoblotting showed that preparations of Arg- and Lys-gingipains of P. gingivalis cleave transferrin (iron-free and iron-saturated forms) into fragments of various sizes. Interestingly, gingival crevicular fluid samples from diseased periodontal sites but not samples from healthy periodontal sites contained fragments of transferrin. By using 55Fe-transferrin, it was found that degradation by P. gingivalis gingipains resulted in the production of free iron, as well as iron bound to lower-molecular-mass fragments. Subsequent to the degradation of transferrin, bacterial cells assimilated intracellularly the radiolabeled iron. Growth of P. gingivalis ATCC 33277, but not growth of an Arg-gingipain- and Lys-gingipain-deficient mutant, was possible in a chemically defined medium containing 30% iron-saturated transferrin as the only source of iron and peptides, suggesting that gingipains play a critical role in the acquisition of essential growth nutrients. Finally, the transferrin degradation products generated by Arg-gingipains A and B were capable of catalyzing the formation of HO., as determined by a hypoxanthine/ xanthine oxidase system and spin trapping-electron paramagnetic resonance spectrometry. Our study indicates that P. gingivalis gingipains degrade human transferrin, providing sources of iron and peptides. The iron-containing transferrin fragments or the release of iron itself may contribute to tissue destruction by catalyzing the formation of toxic HO..
UR - http://www.scopus.com/inward/record.url?scp=3342901643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3342901643&partnerID=8YFLogxK
U2 - 10.1128/IAI.72.8.4351-4356.2004
DO - 10.1128/IAI.72.8.4351-4356.2004
M3 - Article
C2 - 15271890
AN - SCOPUS:3342901643
VL - 72
SP - 4351
EP - 4356
JO - Infection and Immunity
JF - Infection and Immunity
SN - 0019-9567
IS - 8
ER -