Abstract
A monospecific polyclonal antiserum against deglycosylated human pancreatic tumor mucin was used to select human pancreatic mucin cDNA clones from a λgt11 cDNA expression library developed from a human pancreatic tumor cell line. The full-length 4.4-kilobase mucin cDNA sequence included a 72-base pair 5′-untranslated region and a 307-base pair 3′-untranslated region. The predicted amino acid sequence for this cDNA revealed a protein of 122,071 daltons containing 1,255 amino acid residues of which greater than 60% were serine, threonine, proline, alanine, and glycine. Approximately two-thirds of the protein sequence consisted of identical 20-amino acid tandem repeats which were flanked by degenerate tandem repeats and nontandem repeat sequences on both the amino-terminal and carboxyl-terminal ends. The amino acid sequence also contained five putative N-linked glycosylation sites, a putative signal sequence and transmembrane domain, and numerous serine and threonine residues (potential O-linked glycosylation sites) outside and within the tandem repeat position. The cDNA and deduced amino acid sequence of the pancreatic mucin sequence was over 99% homologous with a mucin cDNA sequence derived from breast tumor mucin, even though the native forms of these molecules are quite distinct in size and degree of glycosylation.
Original language | English (US) |
---|---|
Pages (from-to) | 15294-15299 |
Number of pages | 6 |
Journal | Journal of Biological Chemistry |
Volume | 265 |
Issue number | 25 |
State | Published - Sep 5 1990 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology