Comparison of a portable balance board for measures of persistence in postural sway

Zachary S. Meade, Vivien Marmelat, Mukul Mukherjee, Takashi Sado, Kota Z. Takahashi

Research output: Contribution to journalArticle

Abstract

Measuring postural sway is important for determining functional ability or risk of falling. Gathering postural sway measures outside of controlled environments is desirable for reaching populations with limited mobility. Previous studies have confirmed the accuracy of the magnitude of postural sway using the Nintendo Wii Balance Board (WBB). However, it is unclear if the WBB can accurately measure persistence of postural sway, i.e., the pattern of center-of-pressure fluctuations over time. The purpose of this study was to compare measures of persistence of postural sway (through detrended fluctuation analysis) using WBB and a force platform (FP). Seventeen healthy individuals performed three standing conditions: eyes open, eyes closed, and one-leg standing. The WBB (30 Hz) was placed on top on the FP (600 Hz) to collect data simultaneously, then the FP data were downsampled to 100 Hz and 30 Hz. The agreement between WBB and FP for measures of postural sway were influenced by the sampling rate and postural sway direction. Intraclass correlation coefficient was excellent (range: 0.953–0.998) for long-term scaling regions in the anterior-posterior direction, but lower (range: 0.352–0.877) and inconsistent for medial-lateral direction and short-term scaling regions. The three comparison groups (WBB at 30 Hz, FP at 30 Hz, and FP at 100 Hz) showed dissimilar abilities in detecting differences in persistence of postural sway. In summary, the WBB is accurate for quantifying persistence of postural sway measurements in long-term scaling regions in the AP direction, but has limitations for short-term scaling regions and the ML direction.

Original languageEnglish (US)
Article number109600
JournalJournal of Biomechanics
Volume100
DOIs
StatePublished - Feb 13 2020

Keywords

  • Center of pressure
  • Detrended fluctuation analysis
  • Nintendo
  • Variability
  • Wii Balance Board

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Fingerprint Dive into the research topics of 'Comparison of a portable balance board for measures of persistence in postural sway'. Together they form a unique fingerprint.

  • Cite this