Control of in vivo ictogenesis via endogenous synaptic pathways

Hiram Luna-Munguia, Philip Starski, Wu Chen, Stephen Gliske, William C. Stacey

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

The random nature of seizures poses difficult challenges for epilepsy research. There is great need for a reliable method to control the pathway to seizure onset, which would allow investigation of the mechanisms of ictogenesis and optimization of treatments. Our hypothesis is that increased random afferent synaptic activity (i.e. synaptic noise) within the epileptic focus is one endogenous method of ictogenesis. Building upon previous theoretical and in vitro work showing that synaptic noise can induce seizures, we developed a novel in vivo model of ictogenesis. By increasing the excitability of afferent connections to the hippocampus, we control the risk of temporal lobe seizures during a specific time period. The afferent synaptic activity in the hippocampus was modulated by focal microinjections of potassium chloride into the nucleus reuniens, during which the risk of seizure occurrence increased substantially. The induced seizures were qualitatively and quantitatively indistinguishable from spontaneous ones. This model thus allows direct control of the temporal lobe seizure threshold via endogenous pathways, providing a novel tool in which to investigate the mechanisms and biomarkers of ictogenesis, test for seizure threshold, and rapidly tune antiseizure treatments.

Original languageEnglish (US)
Article number1311
JournalScientific reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Control of in vivo ictogenesis via endogenous synaptic pathways'. Together they form a unique fingerprint.

Cite this