TY - GEN
T1 - Controlling the leidenfrost temperature through laserassisted surface micro/nano texturing
AU - Kruse, Corey
AU - Anderson, Troy
AU - Alexander, Dennis
AU - Gogos, George
AU - Ndao, Sidy
PY - 2013
Y1 - 2013
N2 - In the present work, the effect of surface features and wettability on the Leidenfrost temperature are experimentally investigated. The surface features were fabricated on a 304 stainless steel surface using a femtosecond laser. This technique allows for a wide variety of surface microstructures (spikes, mounds, holes, and pyramids) to be created, ranging in size, shape, and spacing. Changing the fluence and shots of the laser produce different micro/nano textured surfaces. A smooth surface sample was fabricated as a reference surface with a measured Leidenfrost temperature as a benchmark. The droplet lifetime experimental method was employed to determine the Leidenfrost temperature for both the smooth and the textured surfaces. A precision dropper was used to control the droplet size to 4.2 microliters (diameter of 2.0mm) while surface temperatures were measured by means of an embedded thermocouple. In comparison to the smooth stainless steel surface, a shift in the Leidenfrost temperature, as high as 55 °C, was observed with the textured surface. The textured surface hasa high emissivity, compared to the smooth surface. As a result, in addition to the shift in the Leidenfrost temperature, significant enhancement of the film boiling heat transfer coefficients were also observed.
AB - In the present work, the effect of surface features and wettability on the Leidenfrost temperature are experimentally investigated. The surface features were fabricated on a 304 stainless steel surface using a femtosecond laser. This technique allows for a wide variety of surface microstructures (spikes, mounds, holes, and pyramids) to be created, ranging in size, shape, and spacing. Changing the fluence and shots of the laser produce different micro/nano textured surfaces. A smooth surface sample was fabricated as a reference surface with a measured Leidenfrost temperature as a benchmark. The droplet lifetime experimental method was employed to determine the Leidenfrost temperature for both the smooth and the textured surfaces. A precision dropper was used to control the droplet size to 4.2 microliters (diameter of 2.0mm) while surface temperatures were measured by means of an embedded thermocouple. In comparison to the smooth stainless steel surface, a shift in the Leidenfrost temperature, as high as 55 °C, was observed with the textured surface. The textured surface hasa high emissivity, compared to the smooth surface. As a result, in addition to the shift in the Leidenfrost temperature, significant enhancement of the film boiling heat transfer coefficients were also observed.
UR - http://www.scopus.com/inward/record.url?scp=84892951067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84892951067&partnerID=8YFLogxK
U2 - 10.1115/HT2013-17771
DO - 10.1115/HT2013-17771
M3 - Conference contribution
AN - SCOPUS:84892951067
SN - 9780791855485
T3 - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
BT - ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
T2 - ASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 14 July 2013 through 19 July 2013
ER -