Cooperative effects in two-dimensional ring-like networks of three-center hydrogen bonding interactions

Rub́n D. Parra, Satya Bulusu, X. C. Zeng

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


Cooperative effects in two-dimensional cyclic networks containing intermolecular three-centered hydrogen bonding interactions of the type H1 ⋯A⋯ H2 are investigated by means of ab intio molecular orbital and density functional theory calculations. Ring-like clusters consisting of three and up to nine monomers of the cis-cis isomer of carbonic acid H2 CO3 are used as basic models, where each unit acts simultaneously as a double hydrogen-bond donor and double hydrogen-bond acceptor. Cooperative effects based on binding energies are evident for (H2 CO3) n, where n goes from 2 to 9. Thus, the ZPVE-corrected dissociation energy per bifurcated hydrogen bond increases from 11.52 kcalmol in the dimer to 20.42 kcalmol in the nonamer, i.e., a 77% cooperative enhancement. Cooperative effects are also manifested in such indicators as geometries, and vibrational frequencies and intensities. The natural bond orbital analysis method is used to rationalize the results in terms of the substantial charge delocalization taking place in the cyclic clusters. Cooperativity seems close to reaching an asymptotic limit in the largest ring considered, n=9.

Original languageEnglish (US)
Article number184325
JournalJournal of Chemical Physics
Issue number18
StatePublished - May 8 2005

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Cooperative effects in two-dimensional ring-like networks of three-center hydrogen bonding interactions'. Together they form a unique fingerprint.

Cite this