Abstract
Metal selectivity in P1B-type ATPase pumps appears to be determined by amino acid motifs on their transmembrane helices. We reveal the principles governing substrate promiscuity towards first-, second- and third-row transition metals in a transmembrane Zn2+/Cd2+/Hg2+/Pb2+ P-type ATPase (ZntA), by dissecting its coordination chemistry. Atomic resolution characterization in detergent micelles and lipid bilayers reveals a "plastic" transmembrane metal-binding site that selects substrates by unique and diverse, yet defined, coordination geometries and ligand-metal distances.
Original language | English (US) |
---|---|
Pages (from-to) | 10844-10847 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 55 |
Issue number | 73 |
DOIs | |
State | Published - 2019 |
ASJC Scopus subject areas
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Chemistry(all)
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry