Covalent binding of acetaldehyde to tubulin: Evidence for preferential binding to the α-chain

R. B. Jennett, M. F. Sorrell, E. L. Johnson, D. J. Tuma

Research output: Contribution to journalArticle

39 Scopus citations

Abstract

The covalent binding of [14C]acetaldehyde to purified beef brain tubulin was characterized. As we have found for several other proteins, tubulin bound acetaldehyde to form both stable and unstable adducts. Unstable adducts (Schiff bases) were stabilized, and rendered detectable, by treating incubated reaction mixtures with the reducing agent sodium borohydride. In short-term incubations, the majority of the adducts formed were unstable, but the percentage of total adducts that were stable gradually increased with time. Stable adduct formation was greatly increased by the inclusion of sodium cyanoborohydride in reaction mixtures (reductive ethylation). When reaction mixtures were submitted to sodium dodecyl sulfate-polyacrylamide gel electrophoresis to separate the α- and β-chains of the heterodimeric tubulin molecule, the α-chain of free tubulin, but not intact microtubules, was the preferential site of stable adduct formation under both reductive and nonreductive conditions. Denaturation studies showed that the native tubulin conformation was necessary for the α-chain to show enhanced reactivity toward acetaldehyde. Competition binding studies showed that α-tubulin could effectively compete with β-tubulin and bovine serum albumin for a limited amount of acetaldehyde. Unstable acetaldehyde adducts with free tubulin or microtubules did not exhibit α-chain selectivity. Analysis of reaction mixtures indicates that lysine residues are the major group of the protein participating in adduct formation. These data indicate that the α-chain of free tubulin is the preferential site of stable acetaldehyde-tubulin adduct formation. Further, these data raise the possibility that α-tubulin may be a selective target for acetaldehyde adduct formation in cellular systems.

Original languageEnglish (US)
Pages (from-to)10-18
Number of pages9
JournalArchives of Biochemistry and Biophysics
Volume256
Issue number1
DOIs
StatePublished - Jul 1987

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

Fingerprint Dive into the research topics of 'Covalent binding of acetaldehyde to tubulin: Evidence for preferential binding to the α-chain'. Together they form a unique fingerprint.

  • Cite this