TY - JOUR
T1 - Critical illness is a major determinant of midazolam clearance in children aged 1 month to 17 years
AU - Ince, Ibrahim
AU - De Wildt, Saskia N.
AU - Peeters, Mariska Y.M.
AU - Murry, Daryl J.
AU - Tibboel, Dick
AU - Danhof, Meindert
AU - Knibbe, Catherijne A.J.
PY - 2012/8
Y1 - 2012/8
N2 - BACKGROUND: In children, a large variability in pharmacokinetics of midazolam, a cytochrome P450 3A4/5 (CYP3A4/5) enzyme substrate, has been described, which cannot be explained by age-related changes alone. In this study, these age-related changes are studied in relation to other covariates to explain the variability in the pharmacokinetics of midazolam in children. METHODS: Population pharmacokinetic modeling was performed using a joint dataset of 3 studies conducted previously: study 1: pediatric intensive care patients requiring sedation in the intensive care unit; study 2: pediatric oncology patients undergoing an invasive procedure; study 3: otherwise healthy infants admitted for postoperative monitoring after elective major craniofacial surgery. Midazolam, 1-hydroxymidazolam, and 1-hydroxymidazolam glucuronide concentrations were considered to determine the pharmacokinetics of midazolam and metabolites using NONMEM 6.2. SimCYP pediatric simulator was used for simulation. RESULTS: Fifty-four children aged between 1 month and 17 years who received intravenous midazolam (bolus and/or continuous infusion) for sedation were included in this study. A reduction of 93% for CYP3A4/5 (midazolam to 1-hydroxymidazolam) and 86% for uridine diphosphate glucuronosyltransferase (1-hydroxymidazolam to 1-hydroxymidazolam glucuronide) mediated clearance was found in pediatric intensive care patients compared with the other 2 patient groups. We did not find a significant influence of age or bodyweight on CYP3A4/5-mediated total clearance. For uridine diphosphate glucuronosyltransferaseg-mediated clearance, bodyweight explained 41.5% of the variability. CONCLUSIONS: From infancy to adolescence, critical illness seems to be a major determinant of midazolam clearance, which may result from reduced CYP3A4/5 activity due to inflammation. This may have important implications for dosing of midazolam and other CYP3A drug substrates in critically ill children.
AB - BACKGROUND: In children, a large variability in pharmacokinetics of midazolam, a cytochrome P450 3A4/5 (CYP3A4/5) enzyme substrate, has been described, which cannot be explained by age-related changes alone. In this study, these age-related changes are studied in relation to other covariates to explain the variability in the pharmacokinetics of midazolam in children. METHODS: Population pharmacokinetic modeling was performed using a joint dataset of 3 studies conducted previously: study 1: pediatric intensive care patients requiring sedation in the intensive care unit; study 2: pediatric oncology patients undergoing an invasive procedure; study 3: otherwise healthy infants admitted for postoperative monitoring after elective major craniofacial surgery. Midazolam, 1-hydroxymidazolam, and 1-hydroxymidazolam glucuronide concentrations were considered to determine the pharmacokinetics of midazolam and metabolites using NONMEM 6.2. SimCYP pediatric simulator was used for simulation. RESULTS: Fifty-four children aged between 1 month and 17 years who received intravenous midazolam (bolus and/or continuous infusion) for sedation were included in this study. A reduction of 93% for CYP3A4/5 (midazolam to 1-hydroxymidazolam) and 86% for uridine diphosphate glucuronosyltransferase (1-hydroxymidazolam to 1-hydroxymidazolam glucuronide) mediated clearance was found in pediatric intensive care patients compared with the other 2 patient groups. We did not find a significant influence of age or bodyweight on CYP3A4/5-mediated total clearance. For uridine diphosphate glucuronosyltransferaseg-mediated clearance, bodyweight explained 41.5% of the variability. CONCLUSIONS: From infancy to adolescence, critical illness seems to be a major determinant of midazolam clearance, which may result from reduced CYP3A4/5 activity due to inflammation. This may have important implications for dosing of midazolam and other CYP3A drug substrates in critically ill children.
KW - CYP3A4
KW - critical illness
KW - midazolam
KW - pediatrics
KW - population pharmacokinetics
KW - therapeutic drug monitoring
UR - http://www.scopus.com/inward/record.url?scp=84863817212&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863817212&partnerID=8YFLogxK
U2 - 10.1097/FTD.0b013e31825a4c3a
DO - 10.1097/FTD.0b013e31825a4c3a
M3 - Article
C2 - 22660604
AN - SCOPUS:84863817212
VL - 34
SP - 381
EP - 389
JO - Therapeutic Drug Monitoring
JF - Therapeutic Drug Monitoring
SN - 0163-4356
IS - 4
ER -