Cross-modal warnings for orienting attention in older drivers with and without attention impairments

Monica N. Lees, Joshua Cosman, John D. Lee, Shaun P. Vecera, Jeffrey D. Dawson, Matthew Rizzo

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Older adults are overrepresented in fatal crashes on a per-mile basis. Those with useful field of view (UFOV) reductions show a particularly elevated crash risk that might be mitigated with vehicle-based warnings. To evaluate cross-modal cues that could be used in these warnings, we applied a variation of Posner's orienting of attention paradigm. Twenty-nine older drivers with UFOV impairments and 32 older drivers without impairments participated. Cues were presented in either a single modality or a combination of modalities (visual, auditory, haptic). Drivers experienced three cue types (valid spatial information, invalid spatial information, neutral) and an uncued baseline. Following each cue, drivers discriminated the direction of a target (a Landolt square with a gap facing up or down) in the visual panorama. Drivers with and without UFOV impairments showed comparable response times (RTs) across the different cue modalities and cue types. Both groups benefited most from auditory and auditory/haptic cues. Redundant visual cues, when paired with auditory cues, undermined performance rather than enhanced it. Overall, drivers responded faster to targets with valid spatial information followed by neutral, invalid, and uncued targets. Cues provide the greatest benefit in alerting rather than orienting the driver. The cue expected to be most effective at orienting attention - the extra-vehicular cue - performs most poorly when the spatial information is either invalid or neutral. Even when the spatial information is valid the extra-vehicular cue underperforms the auditory cues. The results suggest that temporal information dominates spatial information in the ability of cues to speed responses to targets. This study represents a first step in assessing whether combining a cognitive science paradigm and a driving simulator environment can quickly assess how different warning signals alert and orient drivers.

Original languageEnglish (US)
Pages (from-to)768-776
Number of pages9
JournalApplied Ergonomics
Issue number4
StatePublished - Jul 2012
Externally publishedYes


  • Driving
  • Interface design
  • Older drivers
  • Spatial attention
  • Useful field of view
  • Warning signal

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Physical Therapy, Sports Therapy and Rehabilitation
  • Safety, Risk, Reliability and Quality
  • Engineering (miscellaneous)


Dive into the research topics of 'Cross-modal warnings for orienting attention in older drivers with and without attention impairments'. Together they form a unique fingerprint.

Cite this