Deep learning-based MSMS spectra reduction in support of running multiple protein search engines on cloud

Majdi Maabreh, Basheer Qolomany, Izzat Alsmadi, Ajay Gupta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The diversity of the available protein search engines with respect to the utilized matching algorithms, the low overlap ratios among their results and the disparity of their coverage encourage the community of proteomics to utilize ensemble solutions of different search engines. The advancing in cloud computing technology and the availability of distributed processing clusters can also provide support to this task. However, data transferring and results' combining, in this case, could be the major bottleneck. The flood of billions of observed mass spectra, hundreds of Gigabytes or potentially Terabytes of data, could easily cause the congestions, increase the risk of failure, poor performance, add more computations' cost, and waste available resources. Therefore, in this study, we propose a deep learning model in order to mitigate the traffic over cloud network and, thus reduce the cost of cloud computing. The model, which depends on the top 50 intensities and their m/z values of each spectrum, removes any spectrum which is predicted not to pass the majority voting of the participated search engines. Our results using three search engines namely: pFind, Comet and X!Tandem, and four different datasets are promising and promote the investment in deep learning to solve such type of Big data problems.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
EditorsIllhoi Yoo, Jane Huiru Zheng, Yang Gong, Xiaohua Tony Hu, Chi-Ren Shyu, Yana Bromberg, Jean Gao, Dmitry Korkin
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1909-1914
Number of pages6
ISBN (Electronic)9781509030491
DOIs
StatePublished - Dec 15 2017
Externally publishedYes
Event2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 - Kansas City, United States
Duration: Nov 13 2017Nov 16 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
Volume2017-January

Other

Other2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
Country/TerritoryUnited States
CityKansas City
Period11/13/1711/16/17

Keywords

  • Cloud Computing
  • Data Reduction
  • Deep Learning
  • Network Traffic
  • Protein Search Engine
  • Searching Space Reduction

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Deep learning-based MSMS spectra reduction in support of running multiple protein search engines on cloud'. Together they form a unique fingerprint.

Cite this