Design of a four-DOF Modular Self-Reconfigurable Robot with novel gaits

Khoa D. Chu, S. G.M. Hossain, Carl A. Nelson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

Throughout the modern age, exploration of the unknown has been an attractive pursuit to seekers of knowledge. One of the primary frontiers for exploration today involves planetary and lunar environments. Exploration in these environments can involve many different types of tasks in a broad range of environmental conditions. Modular Self-Reconfigurable Robots (MSRs) would be beneficial for completing these tasks in unstructured environments, while having the ability to complete multiple assigned functions. Since payload is a critical concern, a lighter and more dexterous MSR is preferable. This research focuses on the design of a robot that has these qualities. A chain-type modular robot with four degrees of freedom per module has been designed with the goal of reducing weight and size while increasing range of motion. Forward kinematic transformations were derived to analyze the available workspace provided by the MSR. Radio communication and proximity sensing ability were provided in the individual MSR modules to locate each other. The modules are designed to maneuver independently using their individual navigation capability as well as connect to each other by means of a docking mechanism. Locomotion gaits for such multi-module robot chains are also described.

Original languageEnglish (US)
Title of host publicationASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Pages747-754
Number of pages8
EditionPARTS A AND B
DOIs
StatePublished - 2011
EventASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011 - Washington, DC, United States
Duration: Aug 28 2011Aug 31 2011

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A AND B
Volume6

Conference

ConferenceASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Country/TerritoryUnited States
CityWashington, DC
Period8/28/118/31/11

Keywords

  • Modular Robots
  • Reconfigurable robots
  • Robot gaits
  • Unstructured environments

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Design of a four-DOF Modular Self-Reconfigurable Robot with novel gaits'. Together they form a unique fingerprint.

Cite this