Abstract
While highly efficacious in treating rheumatoid arthritis (RA), the approved Janus kinase (JAK) inhibitor, Tofacitinib (Tofa, CP-690 550), has dose-dependent toxicities that limit its clinical application. In this study, we have examined whether a prodrug design that targets arthritic joints would enhance Tofa's therapeutic efficacy, which may provide an opportunity for future development of safer Tofa dosing regimens. A prodrug of Tofa (P-Tofa) was synthesized by conjugating the drug to the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via an acid cleavable carbamate linker. The therapeutic efficacy of a single dose of P-Tofa was compared to the dose-equivalent daily oral administration of Tofa in an adjuvant-induced arthritis (AA) rat model. Saline treated AA rats and age-matched healthy rats were used as controls. Observational analyses support the superior and sustained efficacy of a single dose P-Tofa treatment compared to the dose-equivalent daily Tofa administration in ameliorating joint inflammation. Micro-CT and histological analyses demonstrated that the P-Tofa treatment provided a structural preservation of the joints better than that of the dose-equivalent Tofa. Optical imaging, immunohistochemistry, and fluorescence-activated cell sorting analyses attribute P-Tofa's superior therapeutic efficacy to its passive targeting to arthritic joints and inflammatory cell-mediated sequestration. In vitro cell culture studies reveal that the P-Tofa treatment produced sustained the inhibition of JAK/STAT6 signaling in IL-4-treated murine bone marrow macrophages, consistent with a gradual subcellular release of Tofa. Collectively, a HPMA-based nanoscale prodrug of P-Tofa has the potential to enhance the therapeutic efficacy and widen the therapeutic window of Tofa therapy in RA.
Original language | English (US) |
---|---|
Pages (from-to) | 3456-3467 |
Number of pages | 12 |
Journal | Molecular Pharmaceutics |
Volume | 15 |
Issue number | 8 |
DOIs | |
State | Published - Aug 6 2018 |
Keywords
- ELVIS mechanism
- Janus kinase inhibitor
- Tofacitinib
- inflammation targeting
- prodrug
- rheumatoid arthritis
ASJC Scopus subject areas
- Molecular Medicine
- Pharmaceutical Science
- Drug Discovery