Abstract
We report current progress on a project to develop an all-optically-driven x-ray photon source. A laser pulse with 40-50 TW of peak power is focused on a supersonic helium nozzle to drive a relativistic plasma wave. Electron beams with energies of 320 MeV (+/- 28 MeV) are accelerated by means of laser wakefield acceleration. Remarkably, the acceleration region is only 3 mm in length. This accelerator is currently being employed to demonstrate the generation of MeV-energy x-ray by means of all-optical Thomson scattering. By this mechanism, a lower power, laser pulse (from the same laser system) is focused onto the above laser-driven electron beam, 1-eV energy photons are Doppler-shifted in energy to > 1 MeV.
Original language | English (US) |
---|---|
Pages (from-to) | 606-609 |
Number of pages | 4 |
Journal | AIP Conference Proceedings |
Volume | 1099 |
DOIs | |
State | Published - 2009 |
Event | 20th International Conference on the Application of Accelerators in Research and Industry, CAARI 2008 - Fort Worth, TX, United States Duration: Aug 10 2008 → Aug 15 2008 |
Keywords
- Thomson scattering
- Wakefield acceleration
- X-rays
ASJC Scopus subject areas
- General Physics and Astronomy