Dexterous miniature in vivo robot for NOTES

Amy C. Lehman, Nathan A. Wood, Jason Dumpert, Dmitry Oleynikov, Shane M. Farritor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

The complete elimination of external incisions through natural orifice access to the peritoneal cavity is potentially the next step in reducing the invasiveness of surgery. Natural Orifice Translumenal Endoscopic Surgery (NOTES) provides distinct patient advantages, but is surgically challenging. For the NOTES approach to be applied routinely, devices need to be developed that provide the surgeon with a stable multi-tasking platform for tissue manipulation and visualization. Much research towards device development for NOTES is based on the flexible endoscopy platform. However, these tools remain constrained by the entry incision and are further limited by challenges in tool triangulation, and multi-tasking capabilities. An alternative approach is the use of miniature in vivo robots that can be fully introduced into the peritoneal cavity through a natural orifice. A robotic platform for NOTES is being developed that attempts to emulate laparoscopic capabilities and control. This paper presents the prototype design of this platform and in vivo feasibility studies in non-survivable animal model procedures.

Original languageEnglish (US)
Title of host publicationProceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
Pages244-249
Number of pages6
DOIs
StatePublished - 2008
Externally publishedYes
Event2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008 - Scottsdale, AZ, United States
Duration: Oct 19 2008Oct 22 2008

Publication series

NameProceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008

Conference

Conference2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
Country/TerritoryUnited States
CityScottsdale, AZ
Period10/19/0810/22/08

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Dexterous miniature in vivo robot for NOTES'. Together they form a unique fingerprint.

Cite this