Diabetes alters protein expression of hyperpolarization-activated cyclic nucleotide-gated channel subunits in rat nodose ganglion cells

H. Tu, L. Zhang, T. P. Tran, R. L. Muelleman, Y. L. Li

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

Vagal afferent neurons, serving as the primary afferent limb of the parasympathetic reflex, could be involved in diabetic autonomic neuropathy. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in the vagal afferent neurons and play an important role in determining cell membrane excitation. In the present study, the protein expression and the electrophysiological characteristics of HCN channels were investigated in nodose ganglion (NG) afferent neurons (A-fiber and C-fiber neurons) from sham and streptozotocin (STZ)-induced diabetic rats. In the sham NG, HCN1, HCN3, and HCN4 were expressed in the A-fiber neurons; and HCN2, HCN3, and HCN4 were expressed in the C-fiber neurons. Compared to the sham NG neurons, diabetes induced the expression of HCN2 in the A-fiber neurons besides overexpression of HCN1 and HCN3; and enhanced the expression of HCN2 and HCN3 in C-fiber neurons. In addition, whole-cell patch-clamp data revealed diabetes also increased HCN currents in A-fiber and C-fiber neurons. However, we found that diabetes did not alter the total nodose afferent neuron number and the ratio of A-fiber/C-fiber neurons. These results indicate that diabetes induces the overexpression of HCN channels and the electrophysiological changes of HCN currents in the A- and C-fiber nodose neurons, which might contribute to the diabetes-induced alteration of cell excitability in the vagal afferent neurons.

Original languageEnglish (US)
Pages (from-to)39-52
Number of pages14
JournalNeuroscience
Volume165
Issue number1
DOIs
StatePublished - Jan 13 2010

    Fingerprint

Keywords

  • autonomic nervous system
  • diabetes
  • hyperpolarization-activated cyclic nucleotide-gated current
  • immunofluorescence
  • nodose ganglion afferent neuron

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this