Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota

Inés Martínez, Grant Wallace, Chaomei Zhang, Ryan Legge, Andrew K. Benson, Timothy P. Carr, Etsuko N. Moriyama, Jens Walter

Research output: Contribution to journalArticlepeer-review

285 Scopus citations

Abstract

The mammalian gastrointestinal microbiota exerts a strong influence on host lipid and cholesterol metabolism. In this study, we have characterized the interplay among diet, gut microbial ecology, and cholesterol metabolism in a hamster model of hypercholesterolemia. Previous work in this model had shown that grain sorghum lipid extract (GSL) included in the diet significantly improved the high-density lipoprotein (HDL)/non-HDL cholesterol equilibrium (T. P. Carr, C. L. Weller, V. L. Schlegel, S. L. Cuppett, D. M. Guderian, Jr., and K. R. Johnson, J. Nutr. 135:2236-2240, 2005). Molecular analysis of the hamsters' fecal bacterial populations by pyrosequencing of 16S rRNA tags, PCR-denaturing gradient gel electrophoresis, and Bifidobacterium-specific quantitative real-time PCR revealed that the improvements in cholesterol homeostasis induced through feeding the hamsters GSL were strongly associated with alterations of the gut microbiota. Bifidobacteria, which significantly increased in abundance in hamsters fed GSL, showed a strong positive association with HDL plasma cholesterol levels (r = 0.75; P = 0.001). The proportion of members of the family Coriobacteriaceae decreased when the hamsters were fed GSL and showed a high positive association with non-HDL plasma cholesterol levels (r = 0.84; P = 0.0002). These correlations were more significant than those between daily GSL intake and animal metabolic markers, implying that the dietary effects on host cholesterol metabolism are conferred, at least in part, through an effect on the gut microbiota. This study provides evidence that modulation of the gut microbiota-host metabolic interrelationship by dietary intervention has the potential to improve mammalian cholesterol homeostasis, which has relevance for cardiovascular health.

Original languageEnglish (US)
Pages (from-to)4175-4184
Number of pages10
JournalApplied and environmental microbiology
Volume75
Issue number12
DOIs
StatePublished - Jun 2009
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology

Fingerprint

Dive into the research topics of 'Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota'. Together they form a unique fingerprint.

Cite this