Dispiro-1,2,4-trioxane analogues of a prototype dispiro-1,2,4-trioxolane: Mechanistic comparators for artemisinin in the context of reaction pathways with iron(II)

Yuanqing Tang, Yuxiang Dong, Xiaofang Wang, Kamaraj Sriraghavan, James K. Wood, Jonathan L. Vennerstrom

Research output: Contribution to journalArticle

90 Scopus citations

Abstract

Single electron reduction of the 1,2,4-trioxane heterocycle of artemisinin (1) forms primary and secondary carbon-centered radicals. The complex structure of 1 does not lend itself to a satisfactory dissection of the electronic and steric effects that influence the formation and subsequent reaction of these carbon-centered free radicals. To help demarcate these effects, we characterized the reactions of achiral dispiro-1,2,4-trioxolane 4 and dispiro-1,2,4-trioxanes 5-7 with ferrous bromide and 4-oxo-TEMPO. Our results suggest a small preference for attack of Fe(II) on the nonketal peroxide oxygen atom of 1. For 4, but not for 5 and 6, there was a strong preference for attack of Fe(II) on the less hindered peroxide bond oxygen atom. The steric hindrance afforded by a spiroadamantane in a five-membered trioxolane is evidently much greater than that for a corresponding six-membered trioxane. Unlike 1, 5-7 fragment by entropically favored β-scission pathways forming relatively stable α-oxa carbon-centered radicals. These data suggest that formation of either primary or secondary carbon-centered radicals is a necessary but insufficient criterion for antimalarial activity of 1 and synthetic peroxides.

Original languageEnglish (US)
Pages (from-to)5103-5110
Number of pages8
JournalJournal of Organic Chemistry
Volume70
Issue number13
DOIs
StatePublished - Jun 24 2005

ASJC Scopus subject areas

  • Organic Chemistry

Fingerprint Dive into the research topics of 'Dispiro-1,2,4-trioxane analogues of a prototype dispiro-1,2,4-trioxolane: Mechanistic comparators for artemisinin in the context of reaction pathways with iron(II)'. Together they form a unique fingerprint.

  • Cite this