Abstract
Thromboxane A2 (TxA2) is a potent vasoconstrictor eicosanoid that has been implicated in the pathogenesis of both human and experimental renal diseases. The biological actions of TxA2 in the kidney are mediated through specific cell-surface receptors. In this report, we characterize the distribution of thromboxane receptors (TxR) within the normal mouse kidney by receptor autoradiography. With the iodinated TxR agonist [125I]BOP, TxA2 binding sites were detected throughout the kidney. Competitive inhibition curves of whole kidney binding demonstrated a half-maximal inhibitory concentration of 6.5 nM. When Scatchard analysis was performed on anatomically discrete regions, the [125I]BOP binding in the medulla was best fit by a one-site model, with a dissociation constant (Kd) of 8.2 ± 2.2 nM. In contrast, [126I]BOP binding in the cortex was better described by a two-site model, with estimated Kd of 262 ± 16 pM for a higher affinity site and 16.9 ± 1.3 nM for a lower affinity site. These sites do not appear to represent receptor isoforms that arise from alternative splicing of mRNA. The lower affinity binding sites may represent a novel TxR or an alternative affinity state for the previously characterized high-affinity binding site.
Original language | English (US) |
---|---|
Pages (from-to) | F1131-F1138 |
Journal | American Journal of Physiology |
Volume | 271 |
Issue number | 6 PART 2 |
DOIs | |
State | Published - 1996 |
Externally published | Yes |
Keywords
- Eicosanoid
- Glomerulus
- Medulla
- Receptor autoradiography
ASJC Scopus subject areas
- Physiology (medical)