TY - JOUR
T1 - DNA methylation as an epigenetic mechanism in the regulation of LEDGF expression and biological response in aging and oxidative stress
AU - Bhargavan, Biju
AU - Chhunchha, Bhavana
AU - Kubo, Eri
AU - Singh, Dhirendra P.
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - The physiological quantum of stress-inducible transcriptional protein, Lens Epithelium-Derived Growth Factor (LEDGF), is vital for the maintenance of cellular physiology. Erratic epigenetic reprogramming in response to oxidative stress or with advancing age is found to be a major cause in the gene silencing, leading to pathobiologies. Using aging human (h) eye lens/lens epithelial cells (LECs) coupled with redox-active Peroxiredoxin 6 (Prdx6)-deficient (Prdx6−/−) mLECs as model systems, herein, we showed that in aging/oxidative stress, the human LEDGF gene was regulated by unique methylation patterns of CGs nucleotides within and around the Sp1 binding site(s) of CpG island of the LEDGF promoter (−170 to −27nts). The process caused the repression of LEDGF and its target, Hsp27, resulting in reactive oxygen species (ROS) amplification and cellular insults. This phenomenon was opposed to the unmethylated promoter in LECs. Clinically, we observed that the loss of LEDGF in the Prdx6−/− mLECs or aging lenses/LECs, correlating with increased expression of DNMT1, DNMT3a, and DNMT3b along with the methyl CpG binding protein 2 (MeCP2). Upon oxidative stress, the expression of these molecules was increased with the dramatic reduction in LEDGF expression. While demethylating agent, 5-Aza deoxycytidine (5-AzaC) transposed the aberrant methylation status, and revived LEDGF and Hsp27 expression. Mechanistically, the chloramphenicol acetyltransferase (CAT) reporter gene driven by the LEDGF promoter (−170/ + 35) and ChIP assays uncovered that 5-AzaC acted on GC/Sp1 sites to release LEDGF transcription. The data argued, for the first time, that de novo methylation of CGs around and within Sp1 sites of the CpG island directly disrupted Sp1 activity, which ensued in LEDGF repression and its biological functions. The findings should improve our understanding of cellular insults-associated with aberrant DNMTs-mediated LEDGF’s activity, and can offer strategies for therapeutic intervention to halt aging/oxidative stress-induced abnormalities.
AB - The physiological quantum of stress-inducible transcriptional protein, Lens Epithelium-Derived Growth Factor (LEDGF), is vital for the maintenance of cellular physiology. Erratic epigenetic reprogramming in response to oxidative stress or with advancing age is found to be a major cause in the gene silencing, leading to pathobiologies. Using aging human (h) eye lens/lens epithelial cells (LECs) coupled with redox-active Peroxiredoxin 6 (Prdx6)-deficient (Prdx6−/−) mLECs as model systems, herein, we showed that in aging/oxidative stress, the human LEDGF gene was regulated by unique methylation patterns of CGs nucleotides within and around the Sp1 binding site(s) of CpG island of the LEDGF promoter (−170 to −27nts). The process caused the repression of LEDGF and its target, Hsp27, resulting in reactive oxygen species (ROS) amplification and cellular insults. This phenomenon was opposed to the unmethylated promoter in LECs. Clinically, we observed that the loss of LEDGF in the Prdx6−/− mLECs or aging lenses/LECs, correlating with increased expression of DNMT1, DNMT3a, and DNMT3b along with the methyl CpG binding protein 2 (MeCP2). Upon oxidative stress, the expression of these molecules was increased with the dramatic reduction in LEDGF expression. While demethylating agent, 5-Aza deoxycytidine (5-AzaC) transposed the aberrant methylation status, and revived LEDGF and Hsp27 expression. Mechanistically, the chloramphenicol acetyltransferase (CAT) reporter gene driven by the LEDGF promoter (−170/ + 35) and ChIP assays uncovered that 5-AzaC acted on GC/Sp1 sites to release LEDGF transcription. The data argued, for the first time, that de novo methylation of CGs around and within Sp1 sites of the CpG island directly disrupted Sp1 activity, which ensued in LEDGF repression and its biological functions. The findings should improve our understanding of cellular insults-associated with aberrant DNMTs-mediated LEDGF’s activity, and can offer strategies for therapeutic intervention to halt aging/oxidative stress-induced abnormalities.
UR - http://www.scopus.com/inward/record.url?scp=85196615279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85196615279&partnerID=8YFLogxK
U2 - 10.1038/s41420-024-02076-2
DO - 10.1038/s41420-024-02076-2
M3 - Article
C2 - 38909054
AN - SCOPUS:85196615279
SN - 2058-7716
VL - 10
JO - Cell Death Discovery
JF - Cell Death Discovery
IS - 1
M1 - 296
ER -